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Abstract

In this article we propose a local descriptor for an
unconstrained handwritten word spotting task. The pre-
sented features are inspired by the SIFT keypoint descrip-
tor, widely employed in computer vision and object recog-
nition, but underexploited in the handwriting recognition
field. In our approach, a sliding window moves from left
to right over a word image. At each position, the window
is subdivided into cells, and in each cell a histogram of
orientations is accumulated. Experiments using two dif-
ferent word spotting systems - hidden Markov models and
dynamic time warping - demonstrate a very significant im-
provement when using the proposed features with respect
to the state-of-the-art ones.

Keywords: word spotting, local gradient histogram fea-
tures, hidden Markov models, dynamic time warping

1. Introduction

Handwritten word spotting (HWS) is the pattern clas-
sification task which consists in detecting keywords in
handwritten document images [8]. As is the case for hand-
written word recognition, one of the main difficulties is
the high intra-writer and inter-writer variability. There-
fore, an important decision at the representation phase is
the choice of a suitable word descriptor.

In the literature on handwriting recognition, two main
types of word descriptors can be identified. On the one
hand, holistic approaches [7, 19] extract a single feature
vector per image. These approaches are limited in per-
formance but are sufficient for certain tasks such as digit
recognition, character recognition or small-vocabulary
word recognition.

On the other hand, local or sequential approaches pro-
vide a more accurate description of word images, de-
scribing them as 1-D sequences of feature vectors. One
possibility is to segment the word horizontally into sub-
character units called graphemes [3, 5], and to extract
features from each grapheme to obtain a left-to-right se-
quence. Recently, a more common approach is to let
a sliding window move from left to right over the im-

age and extract features from the pixels in the window
[9, 17, 13, 16]. There exist suitable algorithms for ef-
ficient treatment of such sequences, like dynamic time
warping (DTW) [15] or hidden Markov models (HMM)
[11]. Local descriptors are used in this work since the per-
formances reported in the literature are superior for this
case.

The scenario of the present work is an unconstrained
handwritten word spotting task. Therefore, the goal is
to detect keywords in realistic, unrestricted conditions.
This includes a variety of writer styles, document layouts,
spontaneous writing, artifacts or spelling mistakes. This
is to be contrasted with some previous handwritten word
spotting works that do not always consider these intrica-
cies. For instance, word spotting is mostly applied to the
indexing of historical documents frequently produced by
a single or a few writers [8, 16, 2, 1], a situation where the
variability is significantly reduced.

The main contribution of this work is a new sequen-
tial feature set that obtains performance well beyond the
state-of-the-art in an unconstrained word spotting task.
This feature set is inspired by the SIFT keypoint descrip-
tor [6], which is basically a histogram of oriented gradi-
ents at localized portions of an image. Our application
of this idea for describing words consists in generating
a sequence of such descriptors by moving a sliding win-
dow over the word image. Although the SIFT features are
not common in document analysis, it is worth mentioning
some works employing related concepts. For instance, in
holistic approaches similar features have been proposed
for describing isolated characters [18] or as a subset of a
word descriptor (GSC features) [19], although these are
binary and applied globally to the image. The most simi-
lar features are presented in [4] for a word recognition -not
spotting- task. But there are some differences like their
window subdivision, which lacks of horizontal splits and
is irregular, whereas we show that incorporating horizon-
tal splits and using a regular structure leads to improved
results. In any case, note that it is not our aim to apply
the whole SIFT approach but only to inspire from the key-
point descriptor part.

A secondary contribution of the present article is to



provide an experimental comparison of local word de-
scriptors for word spotting. To give a perspective some-
how independent of the classifier employed, we provide
results both for DTW and HMM. This is not the first time
(see [12]) that a feature comparison is done for DTW.
However, [12] focuses on simple features on a fairly con-
strained task and using only DTW. We consider both
DTW and HMM and recent features in key works (such
as [17]) for an unconstrained task.

The rest of the article is organized as follows. In Sec-
tion 2 we provide some context by offering a brief descrip-
tion of our word spotting system. In Section 3, the state-
of-the-art features that have been tested are presented.
This is followed by the introduction of the proposed fea-
tures, in Section 4. Experimental results are reported and
discussed in Section 5 and, finally, conclusions are drawn
in Section 6.

2. HWS system overview

This study is part of a larger research project whose
goal is to detect keywords in an incoming flow of scanned
letters. One potential application of this is the routing
of mails based on the presence of certain keywords. Of
course, the outcome of this work can be applied to other
problems of similar nature, such as indexing historical
documents [8], document categorization and, more gen-
erally, metadata extraction from document images.

Although a detailed description of the complete sys-
tem pipeline is out of the scope of this work, we provide a
brief overview of the process:

(1) A segmentation algorithm extracts sub-images that
potentially represent words, employing state-of-the-art
techniques based on projection profiles and clustering of
gap distances.

(2) A simple classifier using holistic features is applied
to perform a first rejection pass (fast rejection), which
prunes out about 90% of the segmented words while
falsely rejecting only 5% of the keywords.

(3) The non-pruned word images are normalized with
respect to slant, skew and text height, using standard tech-
niques.

(4) For each normalized image, a sequence of feature
vectors is computed by moving a window from left to right
over the image and by extracting a feature vector at each
position.

(5) A score is assigned to each feature vector sequence.
The corresponding image will be flagged as the keyword
if the score exceeds a predefined threshold.

The present study is focused on point (4) and, more
precisely, it deals with the choice of a robust feature set.
Several state-of-the-art features are evaluated, but due to
their limited performance a new feature set is proposed
and compared to them. In order to make the results rel-
atively independent of the scoring method of step (5), all
tests will be carried out using two scoring mechanisms:
HMM and DTW.

3. State-of-the-art features

In this section we describe the state-of-the art features
employed as baseline in our experiments.

3.1. Column features

One of the most influencing works in offline handwrit-
ing recognition using HMMs is probably the one by Marti
& Bunke [9]. In their work, the features are taken colum-
nwise. From the set of foreground pixels in each image
column, 9 geometrical features are computed, namely: the
total number of foreground pixels, the mean, second order
moment, minimum and maximum of their positions, the
differences between the maximum and minimum values
with respect to the previous column, the number of black-
white transitions, and the number of foreground pixels be-
tween upper- and baseline.

3.2. Pixel count features

In another well-known work by Vinciarelli et al. [17],
a sliding window moves from left to right over the word.
Contrarily to the column features, the width of the sliding
window comprises several columns. At each position, the
height of the window is adjusted to the area actually con-
taining pixels, and then it is split into a 4×4 cell grid. The
pixel counts in each of these cells are concatenated to form
a 16-dimensional feature vector. To avoid boundary prob-
lems at the very first or very last positions of the sliding
window, we assume the area outside the image consists of
zero-valued pixels.

3.3. Gaussian filter features

The most popular approach for word spotting, the one
using DTW, was introduced by Rath & Manmatha [13].
Therefore, we also implemented a set of features by these
authors which are described in [12] and involve Gaussian
filters. First, (a) a Gaussian filter, (b) an horizontal gra-
dient filter and (c) a vertical gradient filter are computed.
Then, a feature vector is built for each column by concate-
nating the values of (a), (b) and (c) corresponding to that
column. In the cited work, the images have a height of
15 pixels, so an image is described using a sequence of
45-dimensional feature vectors.

The reason why the best performing features of the
study [12] have not been preferred is due to the fact that
they happen to be a subset of the Marti & Bunke features.
We carried out preliminary experiments and observed that
the performance of this subset is poorer than the perfor-
mance of the full set. Furthermore, since the chosen fea-
tures contain gradient information, they can be interesting
to compare to ours.

4. Local gradient histogram features

The main contribution of this work is the application of
a new local feature type that has some points in common
with Lowe’s SIFT keypoint descriptor [6], showing that
it leads to improved performance in a word spotting task.



Figure 1. Feature extraction process. Note that the
particular settings are exemplary and do not neces-
sarily represent the optimal choice in the final system.

We refer to our sequential descriptor as “local gradient
histogram features”.

The particular details of the feature extraction process
follow in the next paragraphs. As a complement to the ex-
planation, Fig. 1 provides an overview of the process. It
should be noted that in some parts of this figure the gra-
dient has been represented by its magnitude, but it should
always be thought of as a vector field.

4.1. Sliding window

Given an image I(x, y) of height H and width W , we
center at each column x a window of height H and width
w. At each window position, a feature vector is computed
that only depends on the pixels inside the window. Thus, a
sequence of W feature vectors is obtained. One advantage
of this sliding window approach is that it preserves the
left-to-right nature of the writing.

4.2. Division of the window into cells

At each position, the sliding window is subdivided into
rectangular cells. Different methods can be employed for
this purpose. We propose three possibilities, illustrated in
Fig. 2, namely:

(i) to split the window regularly into M × N cells of
identical dimensions, as in [6]

(ii) to perform the M×N cell division only on the win-
dow area actually containing pixels, as proposed in
[17], and

(iii) to do independent splits in the three zones deter-
mined by the upperline and baseline, thus resulting
in a grid of (A + B + C) × N cells, where A − 1,

Figure 2. Possible grids for feature extraction

B − 1 and C − 1 are the number of splits in each
zone.

4.3. Gradient histogram computation

In each of the cells, local gradient histogram features
are extracted. Denote L(x, y) the result of convolving the
image I(x, y) with a smoothing filter, employed for de-
noising purposes. First, the horizontal and vertical gradi-
ent components Gx and Gy are determined as

Gx = L(x + 1, y) − L(x − 1, y) (1)

and
Gy = L(x, y + 1) − L(x, y − 1). (2)

Alternatively to the smoothing plus the gradient com-
putation, a Gaussian derivative filter can be employed. In
any case, the gradient magnitude m and direction θ are
then obtained for each pixel with coordinates (x, y) as

m(x, y) =
√

G2
x + G2

y (3)

and
θ(x, y) = ](Gy , Gx), (4)

where ] is a function that returns the direction of the vec-
tor (Gx, Gy) in the range [−π, π] by taking into account
tan−1(Gy/Gx) and the signs of Gx and Gy. It corre-
sponds to the implementation ofatan2 in the C program-
ming language.

Then the gradient angles are quantized into a number
T of regularly spaced orientations, and the magnitudes for
identical orientations are accumulated into a histogram.
In other words, for each pixel with coordinates (x, y) we
determine which of the T orientations is the closest to
θ(x, y) and sum m(x, y) to the corresponding bin.

Assigning gradients to the closest orientations may re-
sult in aliasing noise. To reduce its impact, the gradient
magnitude of a pixel can be shared between the two clos-
est bins, as determined by a linear interpolation in the an-
gle domain. In particular, let α and 2π

T
− α denote the an-

gle to the two closest bins for a particular pixel (see Fig.
3). Then the contribution of this pixel to the two bins is
respectively:

m(x, y)
[

1 −

Tα

2π

]

, and m(x, y)
Tα

2π
. (5)



Figure 3. Angular bins for T=8 and angle differences
of θ(x, y) to the two closest bins

As in the case of the pixel count features, it is as-
sumed that outside the image the pixel values are 0 to
avoid boundary effects.

4.4. Frame normalization

The feature vector at one window position, sometimes
called frame, is the concatenation of the gradient his-
tograms computed in each cell. Experimentally, a perfor-
mance gain is obtained when scaling each frame so that
their components sum to 1. This improvement is likely
due to the fact that this scaling performs a local contrast
normalization.

This behaviour is not particular of our features. An
improvement is also observed for the pixel count features
(Sec. 3.2) when the frames are normalized, and therefore
it will also be taken into account for that case. In this case,
scaling the frames introduces an invariance with respect to
stroke thickness.

4.5. Summary

To summarize, if in each window there are M × N
cells (regular split) and each cell is represented by a his-
togram of T bins, each position of the sliding window will
be characterized by a feature vector of M × N × T com-
ponents. The word is characterized by a sequence of W
such vectors.

5. Experiments

In this section the experimental conditions and results
of the feature comparison are presented.

5.1. Experimental conditions

The experiments are carried out on a dataset contain-
ing 630 real scanned letters (written in French) submit-
ted to the customer department of a company. As men-
tioned in the introductory section, these data are uncon-
strained and therefore the letters contain different writ-
ing styles, artifacts, spelling mistakes and other types of
noise. The word hypotheses are segmented from the page
images (see Section 2) and the sub-images corresponding
to certain keywords are manually labelled. Only the 10

Figure 4. Positive labelled samples for the word class
résiliation

most frequent word classes (e.g. “Monsieur”, “Madame”,
“résilier”, “contrat”, etc.) are used in the experiments.
From 208 to 750 positive examples are available for each
keyword. In Fig. 4 some examples of the data labelled
as résiliation (translated as “cancellation”) are displayed.
Prior to classification, samples undergo the mentioned fast
rejection; therefore, all the following results refer to the
set of non-pruned samples.

For all the non-pruned samples, all the described fea-
tures are computed and the resulting classification perfor-
mance is measured. Two classification methods are tested:
HMM and DTW.

In HMM tests the employed similarity score is the log-
likelihood outputted by the model. Training and testing is
carried out using 5-fold cross validation. The dataset is
initially split into 5 folds (ensuring that the same writer
is not mixed among them). Models are trained using data
from 4 folds and tested on the remaining fold. This is
repeated 5 times. Word HMMs (traditional left-to-right
HMMs without skip-state jumps) are trained using 10
states per character.

In DTW tests, 5 random images are used as queries.
For an input image, the negative distance to the closest
query is taken as a similarity score. The experiment is
repeated 5 times and the results are averaged to reduce the
effects of randomness. Of course, the same image sets are
used for every tested feature set.

In both cases the performance of each word detector is
evaluated by inspecting the DET curves [10]. These are
tradeoff curves plotting false acceptance (FA) versus false
rejection (FR) rates. Let θn be the threshold for word n,
meaning that all samples with scores S > θn are retrieved.
Then, FR(θn) is defined as the percentage of samples with
label wn with S < θn. Similarly, FA(θn) is defined as the
number of samples not labelled with wn with S > θn. For
summarizing a curve with a single value, we employ the
common average precision (AP) figure. For some results
we report the mean of the AP across all words, which will
be called mean AP or, shortly, mAP.



Table 1. Mean average precision (mAP) for the differ-
ent grids using HMM

Grid type mAP
Regular, unfitted grid ((1 + 4 + 1) × 4) 0.321

Regular, fitted grid (4× 4) 0.717
Irregular grid (4× 4) 0.655

Table 2. Mean average precision (mAP) for the differ-
ent features using HMM

Features mAP
Proposed local gradient features 0.717

Marti & Bunke [9] 0.329
Vinciarelli et al. [17] 0.336

Rath & Manmatha (Sec. 4.2 of [12]) 0.135

5.2. Results and discussion

Determining the optimal grid type

Before comparing the proposed features to the state-
of-the-art ones, we determine the best split type from the
ones described in Section 4.2. The mAP values for the
HMM using the different types of split are presented in
Table 1. In the table, we also indicate the best settings
obtained for each individual case. In all cases, the optimal
number of orientation bins is found to be T = 8.

As shown in Table 1, the fitted regular grid is on the
average significantly better than the unfitted grid and the
irregular grid. Therefore, in all subsequent experiments,
the proposed features use the fitted regular grid.

The superiority of the fitted grid is reasonable to the
extent that the window focuses on the area with most in-
formation content. We expected a higher performance of
the irregular grid. However, it depends on the accurate de-
termination of the so-called baseline and upperline, which
are less well defined in such a noisy scenario.

Experiments with HMM

The performances of the different feature types are
tested in a HMM-based system. The mean of the aver-
age precision (mAP) across all the words for the different
feature sets are shown in Table 2. The corresponding DET
curves for the word résiliation are shown in Fig. 5.

It can be appreciated that the proposed features give
much better performance than the state-of-the-art features.
In particular, at FR=40% the FA rate is reduced by a factor
from 3 to 10 compared to the next best features. In the
particular case of the pixel count features, a 4 × 4 regular
fitted grid is found to be the best setting, which confirms
the choice in the original reference [17].

Two remarks should be done to the presented results.
First, since the best found setting is a 4 × 4 grid with 8 an-
gles, the features are 128-dimensional. Thus the important
increase in performance that we obtain is at the expense of
a much higher computational cost when compared to the
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Figure 5. DET curves comparing the different fea-
tures for the word résiliation using HMM

Table 3. Mean average precision (mAP) computed for
the different features using DTW

Features mAP
Proposed local gradient features 0.254

Marti & Bunke [9] 0.108
Vinciarelli et al. [17] 0.117

Rath & Manmatha (Sec. 4.2 of [12]) 0.092

Marti & Bunke or Vinciarelli features, that are 9 and 16-
dimensional, respectively.

Second, in view of the low mAP values for the state-
of-the-art features, it should be reminded that i) these re-
sults are for the set of non-pruned samples, a small and
difficult subset of the input samples, and (ii) the task we
are considering, spotting in unconstrained conditions, is
already more difficult.

Experiments with DTW

We have also carried out experiments with DTW since
it is very common in word spotting. Again, the mAP val-
ues are shown in Table 3. In Fig. 6 we show the particular
DET curves for the word résiliation. As it can be appre-
ciated, we obtain the same ordering of results as in the
HMM case.

The same remarks as in the previous section apply, es-
pecially to understand the reasons for the small mAP val-
ues. A visual inspection of the best ranked samples shows
that only the first couple of top samples are usually cor-
rect. Therefore, DTW can be used on these data just to
retrieve the most similar samples but clearly not for ro-
bust spotting.
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Figure 6. DET curves comparing the different fea-
tures for the word résiliation using DTW

6. Conclusions and future work

In this paper, we propose a local feature set that ob-
tains superior performance in a word spotting task when
compared with other local state-or-the-art features. The
authors hope the work also contributes as a benchmark of
feature sets for word spotting. It should be made clear
that the results have been obtained in unconstrained con-
ditions, in contrast to many existing word spotting works
where the source is a single writer.

One limitation of the introduced features is that they
involve 128-dimensional feature vectors in our optimal
setting. Such a high dimensionality has an negative im-
pact on the computational cost. In our case, this expense is
justified by the important increase in performance. Early
experiments with PCA for dimensionality reduction re-
sulted in significant decrease of performance. A future
research may include the exploration of other techniques
for dimensionality reduction such as non-negative matrix
factorization, potentially suitable for our case since the
proposed features are non-negative. Furthermore, an ade-
quate combination of some of the presented features could
lead to a performance improvement while reducing the
computational cost.

A final remark is that we score word images the log-
likelihood of a HMM. A posterior work has shown that
this confidence measure can be improved by considering
score normalization [14]. However, the conclusions of the
feature comparison remain the same after score normal-
ization.
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