
Generation and Performance Evaluation of Synthetic Handwritten

CAPTCHAs

Achint Oommen Thomas Venu Govindaraju

aothomas@cedar.buffalo.edu govind@cedar.buffalo.edu

Center of Excellence for Document Analysis and Research (CEDAR)

Center for Unified Biometrics and Sensors (CUBS)

University at Buffalo, The State University of New York

Amherst, NY

Abstract

In this paper we explore the potential of handwriting

for use in CAPTCHAs. A synthetic handwriting

generation method is presented, where the generated

textlines need to be as close as possible to human

handwriting without being writer-specific. The primary

application of such a synthetic generator is in the design

of handwritten CAPTCHAs (Completely Automatic

Public Turing Test to Tell Computers and Humans

Apart). Such CAPTCHAs can exploit the differential in

reading proficiency between humans and computers,

while dealing with handwritten text images. This makes

them viable for use in human verification by online

services. Test results show that when the generated

textlines are further obfuscated with a set of

deformations, machine recognition rates decrease

considerably, compared to prior work, while human

recognition rates remain the same.

Keywords: CAPTCHA, handwriting generation

1. Introduction

CAPTCHAs have recently come into the spotlight in

cyber security applications. Specifically, these tests are

being used for human verification services online. Spam

control for blogs and automated account sign-up by bots

are some of the applications that require to test if the

entity accessing a service is a human or an automated

machine. Most CAPTCHAs being used today are text-

based. An image consisting of a series of printed text

characters are rendered, distorted and obfuscated to

varying degrees. This image is then presented to a user.

If the user correctly guesses the characters present in the

CAPTCHA he/she is granted access to some service.

Circumventing the challenge posed by a CAPTCHA is

an area that hackers are actively looking into. Several

printed text based CAPTCHAs have already been broken

as reported in [9].

Automated recognition of unconstrained handwriting

continues to be a challenging research task. This fact can

be exploited to develop human verification systems - that

utilize handwritten image challenges - for cyber security

applications. To be suitable for online applications, we

need to be able to automatically generate infinitely-many

distinct artificially handwritten samples. A program must

be able to generate a challenge as well as score the

answer to it. Various models of human-like writing

generation are available in the literature [4, 5, 6 and 7].

Most of the existing approaches are on-line based since

it is more convenient to change the trajectory and shape

of the letters based on the on-line information such as

pen-down, pen-up, and velocity profiles. However, on-

line information is not always available and as an

alternative, researchers are applying various character

and image level perturbations directly on real characters

images or templates. We base our generation technique

on pre-existing character images.

2. Generation Method

In this section, we describe a method for the

generation of cursive English handwritten textline

samples that uses pre-existing character images. This is

part of the authors’ prior work as published in [10]. The

generation algorithm consists of several steps:

i) character auto-scaling, ii) automatic baseline

determination, iii) ligature endpoint detection, iv)

ligature parameterization, v) ligature joining, vi) skeleton

perturbation, and vii) skeleton thickening.

A dataset of over 20,000 images
1
 which contains

multiple handwritten

samples of each

English character has

been used. The

characters have been

segmented out

manually from actual pieces of US mail. For a large

fraction of the cases, the beginning and ending ligatures

1
 Dataset collection and character segmentation done by CEDAR,

University at Buffalo, NY.

Figure 1: Sample Characters

are also present with the character. Figure 1 shows some

examples of the character images.

We first construct a preliminary image, which is a

concatenation of individual character templates.

Character templates are one-pixel wide representations

(skeletons) of the original character image. We use

Blum’s Medial Axis Transform [1] to generate the

character templates.

2.1. Character Auto-Scaling

To form the preliminary image, we concatenate

individual character templates to form a textline. First

we perform auto-scaling of the characters so that all

characters maintain their correct relative sizes with

respect to each other. Auto-scaling is based on the

absolute size of the first character in the string. We

maintain a lookup table of character heights known as

the scaling factor for a character sfc. The scaling factor

gives the number of segments of a three segment vertical

space occupied by a particular character. The height for

character i is calculated as ()
fcifc hsfsf */ where sffc is

the scaling character for the first character, sfi is the

scaling factor for character i and hfc is the height in

pixels of the first character.

2.2. Automatic Baseline Determination

To string together individual characters to form a

textline, we need to make sure that the characters are

aligned vertically at their true baselines. We have

exploited the fact, that in our dataset, the ligatures give

us clues regarding the location of the true baseline. The

procedure to determine the true baseline is as follows.

Sum up the horizontal projections of n consecutive rows

and store this value sHPR for row R where

∑
−=

=
R

nRr

rR HPsHP and HPr is the horizontal projection

value for row r. Normalize sHPRows…n+1 so that

]1,0(1... ∈+nRowssHP and declare the true baseline as

row TB where

)(1... BnRows thresholdsHPfirstTB >= + and Rows is

the total number of pixel rows in the character image,

thresholdB is a cut-off value that is determined

empirically from the dataset and the function first()

returns the first value, in some ordered set X, that

matches some given criteria. first() looks from the

bottom-most horizontal projections to the top-most

horizontal projections. Figure 2 shows a sample

character image for ‘g’ and the corresponding horizontal

projections; n was taken as 1 in this case and thresholdB

was determined to be 0.75.

2.3. Ligature Endpoint Detection

Ligature handling is the most important part of the

procedure since they make a textline look more human-

like. Following a procedure similar to the automatic

baseline detection method, we compute a statistic known

as the pseudo-inking profile from the image.

The pseudo-inking profile captures what could have

been the pen activity as the writer generated the

character image. We compute the sums of vertical

projections of n consecutive columns and store this value

sVPC for row C where ∑
−=

=
C

nCc

cC VPsVP and VPc is the

vertical projection value for row c. We now consider the

first derivative of the pseudo-inking profile. We define

the first derivative fdsVPC as,

)()1()(isVPisVPifdsVP CCC −+= where

]1...1[−∈ Ci . To detect the ligature endpoints we

consider the left and right half images of the character

separately to perform normalization of the first

derivative plot.

Figure 3 shows

how the first

derivative plot is

divided and

normalized

separately. We can

use the first

derivative plots to

detect the ligature

endpoints by

defining a threshold

value thresholdL. We

now look in the

normalized half plots

of the first derivative

for the first peak

above some

threshold. We

compute

)(2/...1...1 LCCB thresholdfdsVPfirstligature >=

Figure 2: Automatic Baseline Determination

for character image ‘g’

Figure 3: Split First Derivative

plot allowing overlap and then

normalize

and

)(1...2/1... LCCE thresholdfdsVPfirstligature >= .

These give us the columns where the beginning and

ending ligatures join the character body. We empirically

decide on a single global thresholdL based on the dataset.

Figure 4 shows

the correctly

detected ligature

points for

character images

‘i’, ‘o’, and ‘d’.

Our tests have

proven that the ligature points have been detected

correctly even for ‘d’ which has hardly any beginning

ligature.

2.4. Ligature Parameterization

We determine the points at which the ligatures join

the main character using regression to fit an n
th
 order

polynomial to the ligature. For some characters, such as

‘f’ or ‘t’, more than one ligatures are possible. We use

heuristic rules to decide on which ligature to use, either

we can pick the largest/smallest ligature component or

pick one component at random. We have used a random

pick in our method.

To fit an n
th
 order polynomial

01

1

1 ...)(axaxaxaxp n

n

n

n ++= −

− to the extracted

ligature, we use regression to perform polynomial

approximation. To determine the order of the polynomial

to represent the ligature, we first start with a polynomial

of order 1, determine the polynomial and then compute a

reconstruction error. The reconstruction error is defined

as the number of mismatched points between the original

ligature and the reconstructed ligature. We move to

progressively higher order polynomials until the

reconstruction error stabilizes and then choose the

polynomial with the lowest reconstruction error.

Figure 5 shows the character images for ‘o’, ‘t’ and

‘a’ and the corresponding parameterized ending ligatures.

The beginning ligatures can be parameterized in a

similar manner.

2.5. Ligature Joining

We use a set of heuristic rules to join the ending

ligature of character i to the starting ligature of character

i+1 similar to the method of curve smoothness

optimization described in [8]. This method is suitable for

our application as it only uses existing information from

a basic character set and defines the inter-character joins

at runtime using interpolation.

2.6. Skeleton Perturbation

We use the perturbation model proposed in [2] and

[3] for the distortion of cursive handwritten textlines.

The model incorporates a set of parameters over a range

of possible values, from which a random value is picked

before an existing textline is distorted. Each geometrical

transformation is controlled by a continuous nonlinear

function, (underlying function), which determines the

strength of the transformation at each horizontal or

vertical coordinate position of the textline. The

underlying functions control geometrical transformations

that affect a whole line of text. The transformations

include shearing, horizontal and vertical scaling, and

baseline bending. Refer [2] and [3] for details.

2.7. Skeleton Thickening

At this point, the textlines are still single pixel wide

images. To thicken the textlines, we use the inverse

Medial Axis Transform. To add to the image complexity,

we also apply an underlying function to vary the stroke

width across the textline. Several examples of final

images are shown in Figure 6.

3. CAPTCHA Generation

The primary application of our synthetic handwriting

generator is automatic random generation of infinitely-

many distinct handwritten (image) challenges for cyber

security. Our ability to generate infinitely-many

handwritten word images implies that we are not limited

by a finite size database of CAPTCHA challenges. This

makes the method suitable for online applications. Once

a handwritten word image or textline has been generated,

we add further distortions to obfuscate the image to a

greater extent. Figure 7 shows some examples of the

kind of distortions that we have used. Note that these are

just an arbitrarily chosen set of distortions. It is certainly

possible to think of other distortions.

Figure 4: Correctly detected ligature

points for ‘i’, ‘o’ and ‘d’

Figure 5: Parameterized Ending Ligatures: ‘o’, ‘t’, ‘a’

Original image on left, processed image on right

Figure 6: Synthetic handwritten word images

Figure 7: Different types of distortions

applied to generated handwritten words

1 2 3 4 5 6 7 8 9

1 2 3 4 5 6 7 8 9 1 2 3 4 5 6 7 8 9 1 2 3 4 5 6 7 8 9

Multiple segmentation

hypotheses

C V O R D W O R D W O R A L

Figure 8: Multiple segmentation hypotheses for a

handwritten word image

4. Performance Evaluation

In this section, we look at the performance of the

handwritten CAPTCHA as perceived by humans and

handwriting recognizers (OCRs). Two recognizers were

used, Word Model Recognizer (WMR) [12] and

Accuscript [13]. WMR is a segmentation-based

recognizer. It considers each word to be a model and

finds the best match between an entry in a lexicon and

the image. Accuscript is a grapheme-based recognizer. It

extracts features from sub-characters (loops, turns,

junctions, arcs, etc), without explicit segmentation. Both

recognizers take advantage of using static lexicons in the

recognition process, as well as using pre-processing

techniques to enhance image quality and remove noise,

thus making the performance evaluation for machines a

fair test. The recognizers were run on a set of 2800

generated images distributed evenly among the various

types of distortions.

One could argue that using lexicon based recognizers

is not representative of the real world scenario for

present day CAPTCHA implementations, because we

reduce the problem to include only a limited number of

challenges. However, for the tests with human subjects,

we chose to only generate words that occur in the

English language. The reason for this can best be

described as seen in Figure 8. For handwritten word

images, character formation ambiguity arising from

different writing styles can lead to multiple segmentation

hypotheses for a given word image. As seen in Figure 8,

three segmentation hypotheses are possible for the

handwritten word shown at the top of the figure.

Humans (and recognizers relying on lexicons),

decide on the correct segmentation hypothesis based on

either context information, or knowledge of the lexicon.

Human recognition accuracy would decrease if the

handwritten CAPTCHA challenges were allowed to be

lexicon independent. This defeats the purpose of using

handwriting for CAPTCHAs. So, for the tests, we limit

ourselves to a lexicon that comprises all the words in the

English language. This makes it feasible for humans to

use context information (that the word is a legitimate

word in the English language), to guess the handwritten

word.

Table 1 shows the recognition accuracy of two types

of OCRs on CAPTCHA challenges with different types

of distortions.

Table 1: Recognition accuracy of OCRs

for different CAPTCHA distortions

HW Recognizer (OCR) WMR Accuscript

All Distortions 1.42 % 2.58 %

No Distortion 23.69 % 37.78 %

Perturbed Image 0.18 % 2.63 %

Edges 0.18 % 0 %

Fragmentation 1.43 % 3.45 %

Displacement 0 % 3.61 %

Mosaic 0 % 3.78 %

Jaws / Arcs 5.91 % 5.83 %

Occlusion by circles 0.36 % 5.75 %

Occlusion by waves 0 % 2.30 %

Exploded Image 0 % 0 %

Vertical Overlap 1.35 % 1.32 %

Horizontal Overlap 4.91 % 1.16 %

Sideways Overlap 2.69 % 1.16 %

Even with no distortions applied on the generated

handwritten word images, the recognizers are not able to

cross the 40% mark. When distortions are applied, the

recognition rate drops much below 10%. The average

recognition rate is comparable for the two recognizers

with Accuscript doing marginally better.

Table 2: Comparison with prior work - Machine

accuracy

HW Recognizer WMR Accuscript

All Distortions

(IWFHR 2006)
12.7% 6.4%

All Distortions

(Current)
1.42% 2.58%

Figure 9: Gap in recognition abilities between

humans and machines for the handwritten

CAPTCHA

Recognition Accuracy Vs. CAPTCHA Deformation

0

10

20

30

40

50

60

70

80

90

N
on
e

P
er
tu
rb
ed

E
dg
e

Fr
ag
m
en
ta
tio
n

D
is
pl
ac
em
en
t

M
os
ai
c

Ja
w
s
/ A
rc
s

C
irc
le
s

W
av
es

E
xp
lo
de
d

V
er
tic
al
 O
ve
rla
p

H
or
iz
on
ta
l

S
id
ew
ay
s

Deformation

A
c
c
u
ra
c
y

Accuscript

WMR

Human

Hacked (WMR)

Hacked (Accuscript)

The current technique improves on prior work

published in 2006 [11]. As shown in Table 2, for all

distortions, the highest machine accuracy was about 13%

as opposed to the current, much lower, 2.6%. Note that

the lower the score, the better, when considering

machine accuracy.

Table 3 shows the corresponding human performance

on a subset of the images used for the OCR tests. For

human testing, random CAPTCHA samples were

presented to users through a website. 2800 responses

were collected from around 100 users. With no

distortions, the average recognition rate for humans is

about 84%. The recognition rate drops for other

distortions, by varying extents. These results along with

results in Table 1 are helpful in determining which types

of distortions would be more suitable for use in the

CAPTCHA application. For all distortions, the average

human recognition rate is about 76%, which is the same

as in the prior work of 2006 [11].

Table 3: Recognition accuracy of

humans for different CAPTCHA

distortions

Human Performance Accuracy

All Distortions 76.29 %

No Distortions 83.97 %

Perturbed Image 77.24 %

Edged Image 78.08 %

Fragmentation 84.17 %

Displacement 77.55 %

Mosaic 69.53 %

Jaws / Arcs 69.96 %

Occlusion by circles 71.71 %

Occlusion by waves 84.25 %

Exploded Image 76.62 %

Vertical Overlap 74.45 %

Horizontal Overlap 80.77 %

Sideways Overlap 66.67 %

Figure 9 summarizes the results and shows a clear

gap between human and machine recognition abilities

for the handwritten CAPTCHA. This shows that

handwriting has potential for use in CAPTCHA

applications.

For suitable use in a cyber security scenario, we must

ensure that the human recognition rate stays high when

compared to machine recognition rates (which should

ideally be zero). Even a seemingly low recognition rate

for machines (say, less than 0.01%), would not

necessarily mean that a given cyber security application

can be considered bot-proof. We must bear in mind that

a recognition rate of x% means that, statistically, x out of

every 100 attempts will be successful. Since it is possible

to have distributed attack networks, repeatedly trying to

gain access to a secured application, the shear volume of

requests would render the low recognition rate itself,

irrelevant. On the other hand, while it would be ideal to

have 100% recognition accuracy for human users, it

would be safe to assume that human users would tolerate

some lack of CAPTCHA ease. For instance, a human

user might not be overly concerned with having to re-try

a CAPTCHA once in every 6 – 8 attempts. This fact can

be exploited while designing CAPTCHAs. Some human

recognition performance can be deliberately sacrificed, if

it degrades machine performance by a considerable

amount.

5. Conclusion and Future Work

We have explored the recognition performance of

humans as compared to machines, on handwritten

CAPTCHAs. We have shown how to generate synthetic

handwriting samples and then apply various distortions

to make them near-unreadable by automatic computer

programs, so that they can be used as CAPTCHA

challenges over the Internet. Test results show a large

gap between human and machine recognition abilities.

There is also a significant decrease in machine

recognition rates for our synthetic samples as compared

to prior work. However, human recognition rates remain

the same. This directly translates as the method being a

better CAPTCHA generation technique.

We plan to improve the method by automatically

learning the threshold values thresholdB and thresholdL

from a given dataset of character images. We plan to

research on deformation techniques that exploit the

knowledge of the common source of errors in automated

handwriting recognition systems and also take advantage

of the cognitive aspects of human reading. We plan to

invite programmers to try to reverse the distortions

applied to the generated word images. These pre-

processed images will then be fed to the recognizers for

machine recognition. It would be interesting to see if

machine performance improves considerably. We plan to

conduct more detailed tests that will involve using non-

sensical words that are generated by stringing together

random characters and also words formed by

concatenating two or more legitimate syllables. If the

human recognition performance is comparable to the

current results, it would mean that we can further reduce

the machine recognition performance since the lexicon

size will increase considerably.

Another application of this generator is to improve

the accuracy of handwriting recognizers by generating

large synthetic training data sets. Since our technique

does not generate writer-specific handwritten textline

samples we could use it for training generic handwriting

recognizers.

References

[1] H. Blum, “A Transformation for Extracting New

Descriptors of Shape”, Models for the perception of

Speech and Visual Form, W. Wathen-Dunn, Ed.

Cambridge, MA: MIT Press, 1967, pp. 362-380.

[2] Varga, T. & Bunke, H., “Generation of Synthetic

Training Data for an HMM-based Handwriting

Recognition System”, In Proceedings of the 7th ICDAR

2003 (pp. 618–622), Edinburgh, Scotland.

[3] Varga, T. & Bunke, H., “Effects of Training Set

Expansion in Handwriting Recognition using Synthetic

Data”, 2003.

[4] Zhouchen Lin and Liang Wan, “Style Preserving

English Handwriting Synthesis”, Microsoft Research

Asia, 2005.

[5] Jue Wang, Chenyu Wu, Ying-Qing Xu and Heung-

Yeung Shum, “Combining Shape and Physical Models

for Online Cursive Handwriting Synthesis”, Intl.

Journal on Document Analysis and Recognition, 2004.

[6] Wacef Guerfali & Rkjean Plamondon, “The Delta Log

Normal Theory for the Generation and Modeling of

Cursive Characters”; IEEE September 1995

[7] Hala Bezine, Adel M. Alimi, and Nabil Derbel,

“Handwriting Trajectory Movements Controlled by a

Beta-Elliptic Model”; Proceedings of the Seventh

International Conference on Document Analysis and

Recognition (ICDAR 2003).

[8] Michael Kokula, “Automatic Generation of Script Font

Ligatures Based on Curve Smoothness Optimization”;

Electronic Publishing 7(4): 217-229 (1994)

[9] K. Chellapilla, K. Larson, P.Y. Simard and M.

Czerwinski, “Building Segmentation Based Human-

Friendly HIPs”; Proceedings of the Second

International Workshop, HIP 2005.

[10] Achint Oommen Thomas, Amalia Rusu, Smruthi

Mukund and Venu Govindaraju, “Non Writer Specific

Synthetic Handwriting Generation for the CAPTCHA

Application”; 2007 IEEE Western New York Image

Processing Workshop.

[11] A. Rusu and V. Govindaraju, “The Influence of Image

Complexity on Handwriting Recognition”; Proceedings

of IWFHR 2006.

[12] J. T. Favata, ”Character model word recognition”,

Proceedings of the Fifth International Workshop on

Frontiers in Handwriting Recognition, 1996, pp 437-

440.

[13] H. Xue, and V. Govindaraju, ”A stochastic model

combining discrete symbols and continuous attributes

and its applications to handwriting recognition”,

Proceeding of the International Workshop on Document

Analysis and Systems, 2002, pp 70-81.

	Index
	ICFHR 2008 Home
	Conference Info
	Conference Committees
	Program Committee Members & Reviewers
	Welcome from the Conference Chair & Co-Chair
	Message from the Technical Program Chairs
	ICFHR08 Keynotes
	ICFHR08 Sponsors

	Sessions
	Tuesday, 19 August 2008
	S1.1-Offline Recognition
	S1.2-Classification / Decision Theory
	PS.1-Poster Session I
	S1.3-Historical Document Processing
	S1.4-Forensics

	Wednesday, 20 August 2008
	S2.1-Segmentation
	S2.2-Arabic Related
	S2.3-Multilingual Recognition
	PS.2-Poster Session II
	S2.4-Applications

	Thursday, 21 August 2008
	S3.1-Writer Identification
	S3.2-Online Recognition
	S3.3-Classification / Decision Theory
	PS.3-Poster Session III

	Authors
	All authors
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	R
	S
	T
	U
	V
	W
	Y
	Z

	Papers
	All papers
	Papers by Sessions

	Topics
	Handwriting Recognition Techniques
	Preprocessing and Segmentation Techniques
	Classifiers and their Combinations
	Multiple Sources and Multiple Experts
	Innovative Approaches in Handwriting Recognition
	Soft Computing for Handwriting Processing and Understan ...
	Systems and Architectures
	Error Reduction and Performance Enhancement
	Writer Verification and Identification
	Motor Models for Writing and Drawing
	Human Reading Models and Psychological Aspects
	Document and Image Retrieval Techniques
	Handwritten Annotations in Documents
	Forensic Studies and Security Issues
	Multimedia Systems
	WWW Applications
	PDA and Remote Applications

	Search
	Help
	Browsing the Conference Content
	The Search Functionality
	Acrobat Query Language
	Using the Acrobat Reader
	Configuration and Limitations

	About
	Current paper
	Presentation session
	Abstract
	Authors
	Achint Thomas
	Venu Govindaraju

