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Abstract 

 
In this paper we explore the potential of handwriting 

for use in CAPTCHAs. A synthetic handwriting 

generation method is presented, where the generated 

textlines need to be as close as possible to human 

handwriting without being writer-specific. The primary 

application of such a synthetic generator is in the design 

of handwritten CAPTCHAs (Completely Automatic 

Public Turing Test to Tell Computers and Humans 

Apart). Such CAPTCHAs can exploit the differential in 

reading proficiency between humans and computers, 

while dealing with handwritten text images. This makes 

them viable for use in human verification by online 

services. Test results show that when the generated 

textlines are further obfuscated with a set of 

deformations, machine recognition rates decrease 

considerably, compared to prior work, while human 

recognition rates remain the same. 
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1. Introduction 

CAPTCHAs have recently come into the spotlight in 

cyber security applications. Specifically, these tests are 

being used for human verification services online. Spam 

control for blogs and automated account sign-up by bots 

are some of the applications that require to test if the 

entity accessing a service is a human or an automated 

machine. Most CAPTCHAs being used today are text-

based. An image consisting of a series of printed text 

characters are rendered, distorted and obfuscated to 

varying degrees. This image is then presented to a user. 

If the user correctly guesses the characters present in the 

CAPTCHA he/she is granted access to some service. 

Circumventing the challenge posed by a CAPTCHA is 

an area that hackers are actively looking into. Several 

printed text based CAPTCHAs have already been broken 

as reported in [9]. 

Automated recognition of unconstrained handwriting 

continues to be a challenging research task. This fact can 

be exploited to develop human verification systems - that 

utilize handwritten image challenges - for cyber security 

applications. To be suitable for online applications, we 

need to be able to automatically generate infinitely-many 

distinct artificially handwritten samples. A program must 

be able to generate a challenge as well as score the 

answer to it. Various models of human-like writing 

generation are available in the literature [4, 5, 6 and 7]. 

Most of the existing approaches are on-line based since 

it is more convenient to change the trajectory and shape 

of the letters based on the on-line information such as 

pen-down, pen-up, and velocity profiles. However, on-

line information is not always available and as an 

alternative, researchers are applying various character 

and image level perturbations directly on real characters 

images or templates. We base our generation technique 

on pre-existing character images. 

2. Generation Method 

In this section, we describe a method for the 

generation of cursive English handwritten textline 

samples that uses pre-existing character images. This is 

part of the authors’ prior work as published in [10]. The 

generation algorithm consists of several steps: 

i) character auto-scaling, ii) automatic baseline 

determination, iii) ligature endpoint detection, iv) 

ligature parameterization, v) ligature joining, vi) skeleton 

perturbation, and vii) skeleton thickening.  

 

A dataset of over 20,000 images
1
 which contains 

multiple handwritten 

samples of each 

English character has 

been used. The 

characters have been 

segmented out 

manually from actual pieces of US mail. For a large 

fraction of the cases, the beginning and ending ligatures 

                                                 
1
 Dataset collection and character segmentation done by CEDAR, 

University at Buffalo, NY. 

Figure 1: Sample Characters 



are also present with the character. Figure 1 shows some 

examples of the character images. 

 

We first construct a preliminary image, which is a 

concatenation of individual character templates. 

Character templates are one-pixel wide representations 

(skeletons) of the original character image. We use 

Blum’s Medial Axis Transform [1] to generate the 

character templates. 

2.1. Character Auto-Scaling 

To form the preliminary image, we concatenate 

individual character templates to form a textline. First 

we perform auto-scaling of the characters so that all 

characters maintain their correct relative sizes with 

respect to each other. Auto-scaling is based on the 

absolute size of the first character in the string. We 

maintain a lookup table of character heights known as 

the scaling factor for a character sfc. The scaling factor 

gives the number of segments of a three segment vertical 

space occupied by a particular character. The height for 

character i is calculated as ( )
fcifc hsfsf */  where sffc is 

the scaling character for the first character, sfi is the 

scaling factor for character i and hfc is the height in 

pixels of the first character.  

2.2. Automatic Baseline Determination 

To string together individual characters to form a 

textline, we need to make sure that the characters are 

aligned vertically at their true baselines. We have 

exploited the fact, that in our dataset, the ligatures give 

us clues regarding the location of the true baseline. The 

procedure to determine the true baseline is as follows. 

Sum up the horizontal projections of n consecutive rows 

and store this value sHPR for row R where 

∑
−=

=
R

nRr

rR HPsHP  and HPr is the horizontal projection 

value for row r. Normalize sHPRows…n+1 so that 

]1,0(1... ∈+nRowssHP and declare the true baseline as 

row TB where 

)( 1... BnRows thresholdsHPfirstTB >= +  and Rows is 

the total number of pixel rows in the character image, 

thresholdB is a cut-off value that is determined 

empirically from the dataset and the function first() 

returns the first value, in some ordered set X, that 

matches some given criteria. first() looks from the 

bottom-most horizontal projections to the top-most 

horizontal projections. Figure 2 shows a sample 

character image for ‘g’ and the corresponding horizontal 

projections; n was taken as 1 in this case and thresholdB 

was determined to be 0.75. 

2.3. Ligature Endpoint Detection 

Ligature handling is the most important part of the 

procedure since they make a textline look more human-

like. Following a procedure similar to the automatic 

baseline detection method, we compute a statistic known 

as the pseudo-inking profile from the image. 

 

The pseudo-inking profile captures what could have 

been the pen activity as the writer generated the 

character image. We compute the sums of vertical 

projections of n consecutive columns and store this value 

sVPC for row C where ∑
−=

=
C

nCc

cC VPsVP  and VPc is the 

vertical projection value for row c. We now consider the 

first derivative of the pseudo-inking profile. We define 

the first derivative fdsVPC as, 

)()1()( isVPisVPifdsVP CCC −+=  where 

]1...1[ −∈ Ci . To detect the ligature endpoints we 

consider the left and right half images of the character 

separately to perform normalization of the first 

derivative plot.  

 

Figure 3 shows 

how the first 

derivative plot is 

divided and 

normalized 

separately. We can 

use the first 

derivative plots to 

detect the ligature 

endpoints by 

defining a threshold 

value thresholdL. We 

now look in the 

normalized half plots 

of the first derivative 

for the first peak 

above some 

threshold. We 

compute 

)( 2/...1...1 LCCB thresholdfdsVPfirstligature >=  

Figure 2: Automatic Baseline Determination 

for character image ‘g’ 

Figure 3: Split First Derivative 

plot allowing overlap and then 

normalize 



and 

)( 1...2/1... LCCE thresholdfdsVPfirstligature >= . 

These give us the columns where the beginning and 

ending ligatures join the character body. We empirically 

decide on a single global thresholdL based on the dataset. 

 

Figure 4 shows 

the correctly 

detected ligature 

points for 

character images 

‘i’, ‘o’, and ‘d’. 

Our tests have 

proven that the ligature points have been detected 

correctly even for ‘d’ which has hardly any beginning 

ligature. 

2.4. Ligature Parameterization 

We determine the points at which the ligatures join 

the main character using regression to fit an n
th
 order 

polynomial to the ligature. For some characters, such as 

‘f’ or ‘t’, more than one ligatures are possible. We use 

heuristic rules to decide on which ligature to use, either 

we can pick the largest/smallest ligature component or 

pick one component at random. We have used a random 

pick in our method. 

To fit an n
th
 order polynomial 

01

1

1 ...)( axaxaxaxp n

n

n

n ++= −

−  to the extracted 

ligature, we use regression to perform polynomial 

approximation. To determine the order of the polynomial 

to represent the ligature, we first start with a polynomial 

of order 1, determine the polynomial and then compute a 

reconstruction error. The reconstruction error is defined 

as the number of mismatched points between the original 

ligature and the reconstructed ligature. We move to 

progressively higher order polynomials until the 

reconstruction error stabilizes and then choose the 

polynomial with the lowest reconstruction error. 

Figure 5 shows the character images for ‘o’, ‘t’ and 

‘a’ and the corresponding parameterized ending ligatures. 

The beginning ligatures can be parameterized in a 

similar manner. 

 

 

 

2.5. Ligature Joining 

We use a set of heuristic rules to join the ending 

ligature of character i to the starting ligature of character 

i+1 similar to the method of curve smoothness 

optimization described in [8]. This method is suitable for 

our application as it only uses existing information from 

a basic character set and defines the inter-character joins 

at runtime using interpolation. 

2.6. Skeleton Perturbation 

We use the perturbation model proposed in [2] and 

[3] for the distortion of cursive handwritten textlines. 

The model incorporates a set of parameters over a range 

of possible values, from which a random value is picked 

before an existing textline is distorted. Each geometrical 

transformation is controlled by a continuous nonlinear 

function, (underlying function), which determines the 

strength of the transformation at each horizontal or 

vertical coordinate position of the textline. The 

underlying functions control geometrical transformations 

that affect a whole line of text. The transformations 

include shearing, horizontal and vertical scaling, and 

baseline bending. Refer [2] and [3] for details. 

2.7. Skeleton Thickening 

At this point, the textlines are still single pixel wide 

images. To thicken the textlines, we use the inverse 

Medial Axis Transform. To add to the image complexity, 

we also apply an underlying function to vary the stroke 

width across the textline. Several examples of final 

images are shown in Figure 6. 

3. CAPTCHA Generation 

The primary application of our synthetic handwriting 

generator is automatic random generation of infinitely-

many distinct handwritten (image) challenges for cyber 

security. Our ability to generate infinitely-many 

handwritten word images implies that we are not limited 

by a finite size database of CAPTCHA challenges. This 

makes the method suitable for online applications. Once 

a handwritten word image or textline has been generated, 

we add further distortions to obfuscate the image to a 

greater extent. Figure 7 shows some examples of the 

kind of distortions that we have used. Note that these are 

just an arbitrarily chosen set of distortions. It is certainly 

possible to think of other distortions. 

 

 

 

Figure 4: Correctly detected ligature 

points for ‘i’, ‘o’ and ‘d’ 

Figure 5: Parameterized Ending Ligatures: ‘o’, ‘t’, ‘a’ 

Original image on left, processed image on right 

Figure 6: Synthetic handwritten word images 



Figure 7: Different types of distortions 

applied to generated handwritten words 
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Figure 8: Multiple segmentation hypotheses for a 

handwritten word image 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4. Performance Evaluation 

In this section, we look at the performance of the 

handwritten CAPTCHA as perceived by humans and 

handwriting recognizers (OCRs). Two recognizers were 

used, Word Model Recognizer (WMR) [12] and 

Accuscript [13]. WMR is a segmentation-based 

recognizer. It considers each word to be a model and 

finds the best match between an entry in a lexicon and 

the image. Accuscript is a grapheme-based recognizer. It 

extracts features from sub-characters (loops, turns, 

junctions, arcs, etc), without explicit segmentation. Both 

recognizers take advantage of using static lexicons in the 

recognition process, as well as using pre-processing 

techniques to enhance image quality and remove noise, 

thus making the performance evaluation for machines a 

fair test. The recognizers were run on a set of 2800 

generated images distributed evenly among the various 

types of distortions. 

One could argue that using lexicon based recognizers 

is not representative of the real world scenario for 

present day CAPTCHA implementations, because we 

reduce the problem to include only a limited number of 

challenges. However, for the tests with human subjects, 

we chose to only generate words that occur in the 

English language. The reason for this can best be 

described as seen in Figure 8. For handwritten word 

images, character formation ambiguity arising from 

different writing styles can lead to multiple segmentation 

hypotheses for a given word image. As seen in Figure 8, 

three segmentation hypotheses are possible for the 

handwritten word shown at the top of the figure.  

 

 

 

 

Humans (and recognizers relying on lexicons), 

decide on the correct segmentation hypothesis based on 

either context information, or knowledge of the lexicon. 

Human recognition accuracy would decrease if the 

handwritten CAPTCHA challenges were allowed to be 

lexicon independent. This defeats the purpose of using 

handwriting for CAPTCHAs. So, for the tests, we limit 

ourselves to a lexicon that comprises all the words in the 

English language. This makes it feasible for humans to 

use context information (that the word is a legitimate 

word in the English language), to guess the handwritten 

word. 

Table 1 shows the recognition accuracy of two types 

of OCRs on CAPTCHA challenges with different types 

of distortions. 

Table 1: Recognition accuracy of OCRs 

for different CAPTCHA distortions 

HW Recognizer (OCR) WMR Accuscript 

All Distortions 1.42 % 2.58 % 

No Distortion 23.69 % 37.78 % 

Perturbed Image 0.18 % 2.63 % 

Edges 0.18 % 0 % 

Fragmentation 1.43 % 3.45 % 

Displacement 0 % 3.61 % 

Mosaic 0 % 3.78 % 

Jaws / Arcs 5.91 % 5.83 % 

Occlusion by circles 0.36 % 5.75 % 

Occlusion by waves 0 % 2.30 % 

Exploded Image 0 % 0 % 

Vertical Overlap 1.35 % 1.32 % 

Horizontal Overlap 4.91 % 1.16 % 

Sideways Overlap 2.69 % 1.16 % 

 

Even with no distortions applied on the generated 

handwritten word images, the recognizers are not able to 

cross the 40% mark. When distortions are applied, the 

recognition rate drops much below 10%. The average 

recognition rate is comparable for the two recognizers 

with Accuscript doing marginally better.  

Table 2: Comparison  with prior work - Machine 

accuracy 

HW Recognizer WMR Accuscript 

All Distortions 

(IWFHR 2006) 
12.7% 6.4% 

All Distortions 

(Current) 
1.42% 2.58% 

 



Figure 9: Gap in recognition abilities between 

humans and machines for the handwritten 

CAPTCHA 

Recognition Accuracy Vs. CAPTCHA Deformation
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The current technique improves on prior work 

published in 2006 [11]. As shown in Table 2, for all 

distortions, the highest machine accuracy was about 13% 

as opposed to the current, much lower, 2.6%. Note that 

the lower the score, the better, when considering 

machine accuracy. 

Table 3 shows the corresponding human performance 

on a subset of the images used for the OCR tests. For 

human testing, random CAPTCHA samples were 

presented to users through a website. 2800 responses 

were collected from around 100 users. With no 

distortions, the average recognition rate for humans is 

about 84%. The recognition rate drops for other 

distortions, by varying extents. These results along with 

results in Table 1 are helpful in determining which types 

of distortions would be more suitable for use in the 

CAPTCHA application. For all distortions, the average 

human recognition rate is about 76%, which is the same 

as in the prior work of 2006 [11]. 

Table 3: Recognition accuracy of 

humans for different CAPTCHA 

distortions 

Human Performance Accuracy 

All Distortions 76.29 % 

No Distortions 83.97 % 

Perturbed Image 77.24 % 

Edged Image 78.08 % 

Fragmentation 84.17 % 

Displacement 77.55 % 

Mosaic 69.53 % 

Jaws / Arcs 69.96 % 

Occlusion by circles 71.71 % 

Occlusion by waves 84.25 % 

Exploded Image 76.62 % 

Vertical Overlap 74.45 % 

Horizontal Overlap 80.77 % 

Sideways Overlap 66.67 % 

 

Figure 9 summarizes the results and shows a clear 

gap between human and machine recognition abilities 

for the handwritten CAPTCHA. This shows that 

handwriting has potential for use in CAPTCHA 

applications. 

For suitable use in a cyber security scenario, we must 

ensure that the human recognition rate stays high when 

compared to machine recognition rates (which should 

ideally be zero). Even a seemingly low recognition rate  

for machines (say, less than 0.01%), would not 

necessarily mean that a given cyber security application 

can be considered bot-proof. We must bear in mind that 

a recognition rate of x% means that, statistically, x out of 

every 100 attempts will be successful. Since it is possible 

to have distributed attack networks, repeatedly trying to 

gain access to a secured application, the shear volume of 

requests would render the low recognition rate itself, 

irrelevant. On the other hand, while it would be ideal to 

have 100% recognition accuracy for human users, it 

would be safe to assume that human users would tolerate 

some lack of CAPTCHA ease. For instance, a human 

user might not be overly concerned with having to re-try 

a CAPTCHA once in every 6 – 8 attempts. This fact can 

be exploited while designing CAPTCHAs. Some human 

recognition performance can be deliberately sacrificed, if 

it degrades machine performance by a considerable 

amount. 

5. Conclusion and Future Work 

We have explored the recognition performance of 

humans as compared to machines, on handwritten 

CAPTCHAs. We have shown how to generate synthetic 

handwriting samples and then apply various distortions 

to make them near-unreadable by automatic computer 

programs, so that they can be used as CAPTCHA 

challenges over the Internet. Test results show a large 

gap between human and machine recognition abilities. 

There is also a significant decrease in machine 

recognition rates for our synthetic samples as compared 

to prior work. However, human recognition rates remain 

the same. This directly translates as the method being a 

better CAPTCHA generation technique.  

We plan to improve the method by automatically 

learning the threshold values thresholdB and thresholdL 

from a given dataset of character images. We plan to 

research on deformation techniques that exploit the 

knowledge of the common source of errors in automated 

handwriting recognition systems and also take advantage 

of the cognitive aspects of human reading. We plan to 

invite programmers to try to reverse the distortions 

applied to the generated word images. These pre-



processed images will then be fed to the recognizers for 

machine recognition. It would be interesting to see if 

machine performance improves considerably. We plan to 

conduct more detailed tests that will involve using non-

sensical words that are generated by stringing together 

random characters and also words formed by 

concatenating two or more legitimate syllables. If the 

human recognition performance is comparable to the 

current results, it would mean that we can further reduce 

the machine recognition performance since the lexicon 

size will increase considerably. 

Another application of this generator is to improve 

the accuracy of handwriting recognizers by generating 

large synthetic training data sets. Since our technique 

does not generate writer-specific handwritten textline 

samples we could use it for training generic handwriting 

recognizers. 
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