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Abstract

This works deals with discriminant training of Gaus-
sian Mixture Models through margin maximization. We go
one step further previous work, we propose a new formu-
lation of the learning problem that allows the use of effi-
cient optimization algorithm popularized for Support Vec-
tor Machines, yielding improved convergence properties
and recognition accuracy on handwritten digits recogni-
tion.

1 Introduction
A Gaussian Mixture Model (GMM) is a generative

probabilistic model that implements a class conditional
density function of the form:

p(x|y) =
K∑
k=1

p(k)× p(x|Ny,k) (1)

where y denotes the class of the sample x, p(k) denotes
the prior probabilities of the kth components, and Ny,k
stands for the kth component of the mixture, which is a
Gaussian distribution with mean µy,k and a covariance
matrice Σy,k:

p(x|Nyk) =
1√

(2π)d|Σyk|
exp

[
−1

2
(x− µyk)Σ−1

yk (x− µyk)
]

(2)
GMMs are used in many areas such as speech or image

processing and recognition. GMMs owe part of their pop-
ularity first to central theorem that gives Gaussian distri-
bution a unique status, and second to their generic feature.
Indeed, one can implement any pdf that respect some reg-
ularity properties with a Gaussian mixture. Also, GMMs
have been shown to be rather efficient, robust, and easy
to use. Finally, GMMs inherit the popularity of Hidden
Markov Models (HMMs) that have been intensively used
for years for sequence classification and segmentation in
speech, off-line and on-line handwriting recognition.

GMMs are traditionally learned with a non discrimi-
nant criterion. One GMM model is learned for each class,
y, with positive-only samples (e.g. via Maximum Likeli-
hood Estimation (MLE) [6, 15]) to implement probability
density functions (pdf) p(x|y). Then one builds a Bayes
decision rules through argmaxy p(x|y) ∗ p(y) (often as-
suming uniform priors). This generative approach is usu-
ally less efficient (e.g. wrt. error-rate) than discriminant
methods. However generative approaches have been ex-
tensively used for dealing with sequences and more gener-
ally with structured data because of the difficulty to learn
discriminant models for such data. Hence, many speech
and handwriting recognizers are based on non discrimi-
nant learning schemes.

Some works investigated the discriminant learning of
models for sequence classification, less have focused on
sequence segmentation. First studies consisted in intro-
ducing discriminant criteria (for GMM or HMMs) and in
using gradient descent like algorithms for optimizing the
chosen criterion. One can mention criteria such as Class
Conditional Likelihood [14], Maximum Mutual Informa-
tion (MMI) [2, 16, 5, 22] or Minimum Classification Error
(MCE) [8], see [11] for a synthetic review of these meth-
ods. Also [21] proposed to learn a classifier that mini-
mizes the probability of error of generative models. Other
techniques have been proposed for building discriminant
systems based on generative models, like the use of Fisher
scores [7], or the use of kernels between models [13].

Lastly, in the last few years a number of studies have
focused on mixing Markovian models, exploiting Gaus-
sian distributions, and Support Vector Machines (SVM)
based discriminant algotihms [23, 9, 12, 19, 20]. For in-
stance the technique in [19, 20] consists in learning GMM
with a maximum margin criterion. These latter works are
very promising but suffer from some limitations. A first
limit comes form the nature of the parameters learned (e.g.
only Gaussian means are learned in [12]). A second limit
comes from the convergence rate which may be very slow,
hence does not yield a good solution.



Here we build on the work of [19, 20] and aim at learn-
ing efficiently generative models through maximization of
the margin. We focus on GMMs and propose a learning
algorithm that differs from the one in [19, 20] from several
aspects. One major component of our work is a new for-
mulation of the learning problem as an optimization prob-
lem which allows the use of SMO-like algorithms (Se-
quential Minimal Optimization) [17, 4, 1]. Thanks to this
formulation we propose a more robust algorithm (wrt. ini-
tialization) with faster convergence and better experimen-
tal recognition results.

We present first the original algorithm proposed in [19,
20] in Section 2. In Section 3 we detail our approach by
reformulating the problem in its dual form and by showing
how to instantiate the SMO algorithm in this particular
case. Finally, we provide experimental results on off-line
handwritten digit recognition in Section 4.

2 Discriminant Learning of GMMs
We consider here the discrimination of d-dimensional

samples (feature vectors) x = [x1, x2, .., xd]. We want to
build a GMM-based classifier from a labeled training data
set (x1, y1), .., (xN , yN ). We describe briefly the standard
non discriminant training algorithm, then we present the
approach proposed in [19, 20].

2.1 Maximum Likelihood learning

Assuming a known distribution law (e.g. Gaus-
sian), the non discriminant approach consists in estimat-
ing class-conditional density probabilities p(x|y) inde-
pendently for each class y using a MLE. Classification of
a test sample is performed by computing class posterior
probabilities (or joint probability P (x, y)) and choosing
the class y that maximizes this probability.

ŷ = argmax
y

p(x|y)× p(y) (3)

where p(y) stands for the prior probability of class y.
Class conditional probability densities p(x|y) are mix-
tures of Gaussian distribution (Cf. Eq. (1)). MLE learning
a GMM for class y consists in searching parameters maxi-
mizing the likelihood of the training samples of that class,
this is performed with an EM-like algorithm. In practice
some numerical problems may arise, especially for high
dimensional data, since obtained covariance matrices are
not always well conditioned. A well-known solution is to
use a regularization term. For instance one can smooth, at
every iteration, the covariance matrices according to:

Σy,k = Σy,k + λId (4)

where λ is usually chosen as a function of the diagonal
terms in Σy,k of of its condition number. We will refer
to this method as EM in the following. Note that we will

consider the following alternative decision rule where a
test sample is affected to the class whose component max-
imizes the component posterior probability.

ŷ = argmax
y

[
max
k

p(x|Ny,k)× p(k|y)× p(y)
]

(5)

2.2 GMM learning with margin maximization

Let consider first the case where K = 1, i.e. class-
conditional densities are single Gaussian distributions.
[19, 20] proposed to express the decision rule as a dis-
criminant function based on Mahalanobis distance. Con-
sider the matrix Φy that is built from the parameters of the
Gaussian distribution for class y, namely its mean µy , and
its inverse covariance matrix ψy = Σ−1

y :

Φy =
[
ψy −ψyµ′y
−µ′yψy µyψyµ

′
y + βy

]
(6)

where βy is a real value corresponding to the log(p(y)).
Note that ψy being an (inverse) covariance matrix, it
is positive semi-definite (PSD hereafter). Noting z =
[x, 1] = [x1, x2, .., xd, 1] an extended sample, the discrim-
inant function takes the form:

ŷ = argminyzΦyz′ (7)

Then, a sample zi with label yi is well classified if
ziΦyi

z′i < ziΦyz′i∀y 6= yi. Hence, for a training dataset
(x1, y1), .., (xN , yN ) one can learn Φy by solving the fol-
lowing optimization problem:

minΦ,ξ
1
2

∑
y ‖ψy‖

2 + C
∑
i ξi

s.c. ziΦyi
z′i ≤ ziΦyz′i − 1 + ξi ∀i∀y 6= yi

ξi ≥ 0 ∀i
ψy � 0 ∀y

(8)
where ψy � 0 means that matrix ψy is PSD. In the

above formulation, usual slack variables are used to deal
with the unseparable case. Note that the regularization
term in the above criterion concerns a subpart of matrix
Φy only since it does appear to be relevant to regularize
means of the distributions.

The above formalization is interesting since the objec-
tive function is quadratic with constraints that are either
linear or convex. This opens possibilities to the use of ef-
ficient optimization techniques such as the ones developed
in the field of Support Vector Machines (SVM). To extend
the formulation to the case of mixtures ofK Gaussian dis-
tributions per class, we introduce additional notations. Let
yi be the class of training sample xi and ki the index of the
component that produced the sample, hence ri = (ki, yi)
is a unique identifier of the Gaussian that is responsible
for xi. For a sample x we note r = (k, y) the identifier of



the Gaussian which emitted it. Also, we will noteR(y) the
set of all component distributions in the class conditional
density for class y. Note that in the particular case where
all ri variables are known the learning problem becomes:

minΦ,ξ
1
2

∑
r ‖ψr‖

2 + C
∑
i ξi

s.c ziΦri
z′i ≤ ziΦrz′i − 1 + ξi ∀i∀r /∈ R(yi)

ξi ≥ 0 ∀i
ψr � 0 ∀r

(9)
[19, 20] propose to remove slack variables in Equation

(9) by introducing the hinge function, where hinge(z) =
max(0, z). This changes the problem into:

minΦ
1
2

∑
r ‖ψr‖

2

+C
∑
i=1:N

∑
r/∈R(yi)

hinge(1 + ziΦri
z′i − ziΦrz′i)

s.c ψr � 0 ∀r
(10)

The objective function is convex and so are the con-
straints, which can be solved with e.g. a projected gra-
dient descent technique [3, 18]. Every parameter update
step is followed by a projection step. If the constraints are
not satisfied parameters are projected in the subspace of
the parameter space where constraints are satisfied. In the
particular case of PSD of covariance matrices the projec-
tion step consists in finding the closest matrice toψr that is
PSD, which may be not so simple. [19, 20] proposed to set
all negative eigen values of ψr to zero. This is a simple but
rough method that makes the convergence relatively slow,
hence much sensitive to initialization as suggested by the
authors. In practice, they use as inialization the solution
of MLE training.

3 Max-margin learning of GMMs in the
dual

We just showed that PSD (non linear) constraints on
ψr prevent the use of the dual form of the optimization
problem and lead to slow and inefficient optimization al-
gorithms. We propose here an improved alternative for-
mulation allowing more efficient optimization algorithms.

3.1 Dual formulation

Noting that M � 0 ⇐⇒ ∀x, xMx ≥ 0 we propose
to replace the PSD constraint M � 0 by a set of con-
straints of the form xMx ≥ 0. For instance, considering
these constraints for all training samples Eq. (9) becomes:

minΦ,ξ
1
2

∑
r ‖ψr‖

2 + C
∑
i ξi

s.c ziΦri
z′i ≤ ziΦrz′i − 1 + ξi ∀i∀r /∈ R(yi)

ξi ≥ 0 ∀i
(xi − µt)ψr(xi − µt)′ ≥ 0 ∀i, ∀r

(11)
where µt denotes the mean of all training samples (it is
not considered as a variable in the following). Of course,

satisfying all the constraints (x − µt)ψr(x − µt) ≥ 0 for
the whole training set does not warranty that ψr is PSD.
The idea behind our proposition is that we expect that if
the constraint (x − µt)ψr(x − µt) ≥ 0 is satisfied for all
training samples then the matrice ψr should be PSD. Al-
though we did not demonstrate such a result we did not
encounter a counter-example in our experiments. To im-
prove the clarity of the presentation we introduce tempo-
rary variables θi as in [1], Eq. (11) becomes:

minΦ,ξ,θ
1
2

∑
r ‖ψr‖

2 + C
∑
i ξi

s.c ziΦri
z′i ≤ θi − 1 + ξi ∀i
θi ≤ ziΦrz′i ∀i∀r /∈ R(yi)
ξi ≥ 0 ∀i

(xi − µt)ψr(xi − µt)′ ≥ 0 ∀i, ∀r
(12)

Following standard derivation, this optimization prob-
lem can be solved by writing the Lagrangian then notic-
ing that the solution is given by a saddle point of the La-
grangian, that must be minimized wrt. parameters Φ,ξ,θ
and maximized wrt. Lagrange multipliers. Omitting de-
tails, one can get the dual form:

maxα,γ − 1
2

∑
r ‖ψr‖

2 +
∑
i α

ri
i

s.c αri > 0, γri > 0, αri
i < C ∀i∀r∑

r y
r
i α

r
i = 0 ∀i∑

i y
r
i α

r
i = 0 ∀r∑

i y
r
i α

r
ixi = 0

(13)

3.2 Optimization with SMO

To optimize efficiently (13) we looked at decomposing
it in smaller problems, this is the SMO strategy.

3.2.1 Principle

The principle of SMO is to (iteratively) select a train-
ing sample and then to optimize the objective function
w.r.t. the variables associated to the selected sample
[17, 4, 1]. The optimization step is performed through
the iteration of minimal optimization steps, each concerns
a pair only of variables that are linked through a con-
straint. These elementary optimization steps should be
solved analytically. This algorithm relies on heuristics
for the choice of the sample, and for the choice of the
two variables to be optimized in a single elementary step.
In our implementation, we first roughly evaluate the ex-
pected gain for every training sample (by examining what
happens for a particular pair of variables). Also, to avoid
a costful procedure to evaluate the most interesting pair
of variables we rely on KKT conditions to determine it
efficiently (see [1]).



3.2.2 SMO for GMM learning

Applying SMO in our case is not straightforward be-
cause of the constraints

∑
i y
r
i α

r
ixi = 0 in Eq. (13). The

problem lies in that these constraints actually link vari-
ables that are associated to all the training samples. Then,
there (may) exist pairs of variables that cannot be opti-
mized in a SMO step, i.e. one cannot change their values
while still satisfying the constraints. Note that these con-
straints concern the last rows and columns of matrices Φr,
i.e. quantities involved are µrψr and µrψrµ′r + βr. A so-
lution is to consider these quantities as variables that we
note Ξr. This makes sens since, provided ψr is invertible
(i.e. strictly positive since it is already PSD), quantities
νr = µrψr and νr = µrψr may be viewed as variables
that are independent from ψr. This is not always true in
practice but this leads to good convergence behavior.

Based on this discussion, we propose to overcome the
difficulty of handling the PSD constraint by distinguish-
ing between two sets of variables to be learned, the ma-
trices ψr on the one hand and the remaining parameters
Ξr on the other hand, and to optimize iteratively and al-
ternatively these two sets of parameters. The convexity
of the objective function and of the constraints (wrt. Φr)
warranties the convergence toward the global optimum so-
lution. Besides, the optimization wrt. Ξr is linear, hence
simple. We come back now to the optimization wrt. ma-
trices ψr and detail the SMO algorithm. First we express
the primal optimization problem of Equation(11), while
considering optimization wrt. ψr only (Ξr are assumed
constant).

minψ,ξ,θ,δ 1
2

∑
r ‖ψr‖

2 + C
∑
i ξi

s.c xiψri
x′i − 2xiνri

+ δri
≤ θi − 1 + ξi ∀i

θi ≤ xiψrx′i − 2xiνr + δr∀i∀r /∈ R(yi)
ξi ≥ 0 ∀i

(xi − µt)ψr(xi − µt)′ ≥ 0 ∀i∀r
(14)

The problem in Eq. (14) is still a quadratic program
which we can get the dual form as previously, with only
one equation corresponding to δL

δψr
= 0, leading to:

ψr =
∑
i

γri (xi − µt)′(xi − µt)−
∑
i

yri a
r
ix
′
ixi (15)

We then get the dual:

maxα,γ − 1
2

∑
r ‖ψr‖

2 +
∑
i α

ri
i

+
∑
i,r α

r
i y
r
i (−2xiνr + δr)

s.c αri > 0, γri > 0, αri
i < C ∀i∀r∑

r y
r
i α

r
i = 0 ∀i∑

i y
r
i α

r
i = 0 ∀r

(16)

where ψr =
∑
i γ

r
i (xi − µ)′(xi − µ)−

∑
i y
r
i a
r
ix
′
ixi

3.2.3 Elementary step

The above problem (16) is ready for decomposition.
We present now the elementary step for a training sam-
ple xi, whose associated variables are αri and γri , with
associated constraints αri > 0, αri

i ≤ C,γri > 0, and
αri
i =

∑
r/∈R(yi)

αri . We discuss now the optimization of
αri then the optimization of γri .

Optimization of αri consists in first selecting a pair of
variables ra et rb (corresponding to two Gaussian compo-
nents), then searching the new values for αra

i , αrb
i that

maximize the dual, while still satisfying the constraint
αri
i =

∑
r/∈R(yi)

αri . We distinguish two cases. In the first
case, one of the Gaussian is the one associated to the train-
ing sample xi, let assume ra = ri. Then, if we increase
αra
i by v, then we should increase similarly αrb

i which
does not belong to R(xi). In that case optimization con-
sists in determining optimal value v that maximizes the
dual. This may be done analytically since the latter is a
quadratic function of v, all other variables being fixed. In
the second case, none of the two variables correspond to a
Gaussian component in R(yi). Then, since

∑
r/∈R(yi)

αri
cannot change one has to remove value v to αra

i , if it is
added to αrb

i . Here again the dual is a quadratic func-
tion of v and the optimal value may be found analytically.
Note that in any case if the optimal value v∗ leads to the
violation of a constraint such as (αri ≥ 0 ,αri

i ≤ C ) then
the closest value to v∗ that satisfy the constraint is chosen.
For instance if αri + v∗ ≤ C then we choose v = v∗ else
we choose v = C − αri

i .
Finally, optimization of variables γri does not come

with any problem since no constraint link these variables.
γri occur in ψr only (Cf. Eq. (16)) so that optimal changes
of these variables may also be determined analytically.

4 Experiments
We report experimental results gained on two off-line

handwritten digit recognition benchmark databases, USPS
dataset [10] and MNIST1 dataset. USPS dataset con-
sists in 7291 training samples and 2007 test samples, each
digit is a 16x16 image. MNIST dataset consists in 60000
traing samples and 10000 test samples, each digit is a
28x28 image. We used a standard preprocessing for the
two datasets ([11]), consisting in a Principal Components
Analysis (PCA) where we keep the 50 principal compo-
nents.

Experiments aim at comparing results of discriminant
learning with the two optimization methods, projected
gradient with the hinge function as in [19, 20] and SMO
algorithm in our case. In all the experiments, the discrim-
inant training is systematically initialized with the result
of non discriminant training (MLE estimation with an EM

1http://yann.lecun.com/exdb/mnist/index.html



Figure 1. Comparison of convergence rates for the
projected gradient based method in [19] (Grad) and
our algorithm (SMO).

algorithm). A side effect of this initialization is the la-
beling of all training samples with the emitting Gaussian
component (ri).

We begin with the analysis of convergence for the
two discriminant methods. Both algorithms are initialized
with the MLE solution and are used with the same hyper
parameter C. Figure 1 shows the evolution of objective
function (value of the primal) as a function of time for the
gradient method (Grad) and for our algorithm (SMO), for
the USPS dataset. Absolute value of time doesn’t matter
here, what is actually interesting lies in the difference be-
tween the two methods. One may easily see on this figure
that our technique based on SMO converges much faster
than the projected gradient method, which takes much
more time to converge to a good solution. While in theory
the optimization problem in Equation (10) is convex and
can be solved with a projected gradient method, it turns
out that things are not so simple in practice. Convergence
may be very slow so that reaching a good solution is not
warrantied at all. Experimentally we observed that the so-
lution of the Gradient method is much dependent on the
initialization since numeric problems often prevent con-
vergence to the optimal solution. From this point of view
out method appears to be much more robust wrt. initial-
ization.

Next figures (Figures (2) and (3) illustrate the sensi-
tivity of both approaches by comparing the performances
of the regularized non discriminant solution of Eq. (4)
(EM) and of the two discriminant approaches (initialized
with the EM solution), as a function of the regulariza-
tion parameter λ (Cf Eq.(4)). Figure (2) shows the case
of mixture models with two Gaussian component models
per class (i.e. K = 2 in Eq.(1)) while Fig. (3) shows what
happens with mixture models with four Gaussian compo-
nents per class (K = 4). Whatever the EM initialization
is (i.e. whatever λ), and in both cases (K = 2 or K = 4),
our approach performs better that the reference method in

[19]. Also our method appears to be less sensitive to ini-
tialization, which confirms convergence analysis results.
This is an important point since a good initialization with
EM usually comes with numeric problems and requires a
careful regularized solution. With our method such a care-
ful (i.e. manual) initialization is not mandatory so that one
can use an automatically determined λ (i.e. non optimal
EM solution) while still converging to the optimal maxi-
mum margin solution.

Figure 2. Comparison of the classification perfor-
mances (on USPS dataset) for the regularized non
discriminant solution (EM), algorithm [19] (Grad) and
our algorithm (SMO) as a function of λ. Class models
are mixtures of two Gaussian distributions.

Figure 3. Comparison of the classification perfor-
mances (on USPS dataset) for the regularized non
discriminant solution (EM), algorithm in [19] (Grad)
and our algorithm (SMO) as a function of λ. Class
models are mixtures of four Gaussian distributions.

Finally we provide comparative results for the three
methods on two datasets (USPS and MNIST) when K
varies from 1 to 8 and for two typical cases of strong reg-



Table 1. Error rates for USPS digits, for regularized
EM, [19] (Grad) and our algorithm (SMO), when λ is
large (a) and small (b), for various K.

K EM Grad SMO
1 7.22 5.23 4.88
2 6.61 5.23 4.68
4 5.86 4.88 4.48
6 5.46 4.73 4.43

K EM Grad SMO
1 5.83 5.13 4.88
2 5.30 4.68 4.61
4 4.92 4.43 4.33
6 4.90 4.43 4.33

(a) (b)

Table 2. Error rates for MNIST digits, for regularized
EM, [19] (Grad) and our algorithm (SMO), when λ is
large (a) and small (b), for various K.

K EM Grad SMO
1 5.72 2.31 2.03
2 5.01 2.24 1.91
4 3.72 2.02 1.79
8 3.00 1.91 1.69

K EM Grad SMO
1 3.93 2.10 2.03
2 3.48 2.05 1.90
4 2.65 1.99 1.79
8 2.07 1.78 1.69

(a) (b)

ularization (large value of λ) and of light regularization
(small value of λ). A first comment is that in any case
our method performs similarly or better than the reference
method, which confirms earlier results. Here again we see
that our method is less sensitive to initialization whatever
the number of components and whatever the dataset. Fi-
nally one note that the difference between our method and
the gradient based one is less significant when regulariza-
tion is light.

5 Conclusion
We proposed a new algorithm for learning GMMs

through margin maximization. We proposed a new formu-
lation of the learning problem that led us derive a new al-
gorithm based on the SMO algorithm. Experiments show
that our algorithm exhibits increased robustness and bet-
ter convergence properties (wrt. convergence speed and
quality) which translate into reduced error-rates on hand-
written digit recognition for two benchmark datasets.
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