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Abstract.  This paper focuses on learning recognition 
systems able to cope with sequential data for classification 
and segmentation tasks. It investigates the integration of 
discriminant power in the learning of generative models, 
which are usually used for such data. Based on a procedure 
that transforms a sample data into a generative model, 
learning is viewed as the selection of efficient component 
models in a mixture of generative models. This may be done 
through the learning of a Support Vector Machine. We 
propose a few kernels for this and report experimental 
results for classification and segmentation tasks. 

1. Introduction 
In order to perform classification, one can estimate either 
posterior class probabilities or class conditional probability 
density functions. Roughly speaking, the former 
corresponds to discriminant methods – Neural Networks, 
Support Vector Machines (SVM) – where training focuses 
on the differences between classes. The latter corresponds 
to independent learning of class conditional probability 
density models (e.g. generative models such as Gaussian 
model, Markov model) with e.g. a Maximum Likelihood 
criterion. Discriminant systems are usually more powerful 
than generative models. The latter are however very 
popular for many tasks. Indeed, most discriminant 
techniques are adapted to vectorial data, i.e. fixed 
dimension data, and cannot be used with variable sized (e.g. 
sequential) data like speech or handwriting signals. Hence 
most speech or handwriting recognition systems are based 
on Markovian models. Furthermore, due to the multimodal 
characteristic of such data (for example a handwritten 
character "b" may be written in various ways) mixture 
models are particularly popular in these fields. Hence many 
signal recognition and segmentation tasks are tackled by 
learning class models that are mixture of generative models.  
This paper proposes a way to increase the discriminant 
power of generative based systems and more specifically of 
mixture of generative models. Some techniques were 
proposed for discriminant learning of generative models, in 
particular for sequential data. For example, the use of the 
Fisher score [4] made it possible to use a discriminant 
technique, namely Support Vector Machines, for sequential 
data classification. This technique has a main drawback. It 

does not allow performing segmentation, which consists of 
segmenting an input signal into sub units (e.g. phonemes or 
letters) and simultaneously recognizing these units. 
Segmentation is generally the most interesting task for 
sequential data (e.g. in speech and handwriting 
recognition). Our goal is to explore techniques to combine 
the efficiency of the discriminant methods with the 
flexibility of mixtures of generative models. We aim at 
learning models that both exhibit improved discriminant 
power and are able to perform sequence recognition as well 
as segmentation. We then seek to use discriminant methods 
to build powerful generative models which perform better 
than generative models trained traditionally with a non 
discriminant criterion such as Maximum Likelihood. In the 
following, we will consider the case of generative model 
with the following form: 
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where c denotes a class, P(x/c) is the probability of a 
sample data x (e.g. a sequence) by the model of class c, 
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The paper is organized as follows. First, we discuss of 
related works that have been proposed for increasing 
discriminant power of generative models, mainly kernel 
methods in sequence recognition tasks. Then we describe 
our approach. First we present the principle of the method, 
then the learning of component models then the learning of 
prior weights. Finally, we report experimental results on 
sequence classification and segmentation tasks. We report 
experimental results for artificial data and for on-line 
handwriting data. 

2. Related work 
There have been a number of studies for increasing 
discriminant power of generative models. Most of these 



techniques either rely on replacing usual Maximum 
Likelihood training criteria with a discriminant criterion 
such as Maximum Mutual Information or changing of 
representation space in order to use standard discriminant 
techniques such as neural networks or SVM. These latter 
studies mainly rely on the definition of kernel methods and 
SVM and have been proposed for sequence recognition 
tasks. SVM have become a traditional and powerful 
approach for classification and regression tasks [10],[11]. A 
SVM classifier has the following general form for a two 
classes classification problem:   

∑ +=
i

iii bxxKyxf ),()( α  (2) 

where x is an input pattern to be classified, xi are training 
samples, whose classes are identified by labels { }1,1 +−∈iy . 
The coefficients  and b are the parameters of the function 
f. K is the kernel function, it is the dot product of the 
projections of data in a high dimension space: 
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The classification of a test sample x is performed according 
to the sign of f(x). Training of SVM consists of determining 
the parameters of the function f ( iα  and b) such that the 
margin is maximized. Coefficients  are non null for a 
subset of the training points which are called “support 
vectors” (SV). Various approaches were proposed to apply 
SVM to sequential data. In [4],[5] the idea consists of 
transforming data into a fixed dimension representation, the 
Fisher Score. One uses a generative model learned from the 
data, λθ, and defined by a set of parameters θ. Then one 
defines the new representation of a sequence x as the 
gradient of the log likelihood of x by λθ: 
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)(xU includes information on how the model λθ should 
change to produce signal x with high probability. By doing 
this, one changes the space of representation of all training 
data, which are then represented in a fixed dimension space 
(the number of parameters of λθ). This makes possible the 
use of any discriminant classical technique such as Neural 
Networks or SVM on these representations. 
Bahlmann [2] uses a system based on prototypes 
(representative samples of each class) and defines a kernel 
on sequential data which is based on a distance between 
sequences that has been very much used in the speech 
recognition field, the Dynamic Time Warping (DTW) 
distance. The kernel between two sequences is defined by: 

ByxdA dtweyxK +−= ),(.),(  (5) 

where A and B are parameters that are tuned empirically. 
Similar techniques are discussed in [12]. Note that the 
system proposed by the author is a SVM discriminant 

function that does not allow performing segmentation but 
exhibit improved classification performance over purely 
generative models. 
Moreno [9] explores a third technique which consists of 
using a correspondence between data and model. In the 
speaker identification task he studied in his paper each 
sample data consists of a speech signal of a few tens of 
seconds. It is transformed into a generative model (a 
mixture of Gaussian laws) by learning with a Maximum 
Likelihood criterion. The Gaussian model is simple enough 
to be learned on one test sample (i.e. signal) only. From this 
construction of a model λx from a data x, [9] proposes to 
use a probabilistic kernel between two data x and y, which 
reflects the difference between associated generative 
models λx and λy. This kernel is based on the Kullback 
Leibler divergence between the probability distributions 
implemented by the two models. Then he builds a 
discriminant SVM function. This approach can, of course, 
only be applied if the considered generative model is simple 
enough to be learned with only one training or test sample. 

3.   Model selection with Support Vector 
Machines  

First, we discuss the principle of our approach, then we 
present kernels for generative models. These kernels are 
used to select component models in a mixture model 
defined according to Eq. (1). Finally we discuss the 
learning of prior weights in such a mixture model. 
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3.1. Principle 
Figure 1 schematically presents our framework which relies 
on the change of representation space. This change exploits 
a correspondence between data and model, which we will 
discuss in more detail later. The idea is that, using a 
transformation λ, any sample x may be transformed into a 
generative model λ(x) or λx in such a way that this model 
gives high likelihood to x and to similar samples. We will 
call such a model a local generative model. For instance a 
real feature vector x may be transformed into a Gaussian 
distribution with mean x and identity covariance matrix.  
During training, one changes the representation space by 
transforming, using λ, any training sample x in a local 
generative model λ(x). Next, one can use SVM on these 
new "data" (i.e. local generative models) by defining a 
kernel function on these generative models.  
Learning of a SVM with such a kernel leads to a 
discriminant function whose support vectors are local 
generative models. From this procedure, we investigated 
two kinds of discriminant systems.  
First, one can build a discriminant SVM system that 
performs sequence classification. Training is done as just 
described. At test time, a test sample is first transformed 
into a local generative model, then the SVM function is 
used to determine the corresponding sample class.  



Second, one can design a system based on mixture of 
generative models. Training starts as just described. Then, 
mixture models are built as follows: component models are 
defined as support vectors in the SVM system since these 
local generative models are good candidates for component 
models  in Eq. (1).  Next, prior weights are learned using 
a discriminant criteria. In case of sequence data, such 
generative models may be used for classifying or 
segmenting input signals. 
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Figure 1. Using Support Vector Machines for learning 
mixture of generative models. 

3.2. Kernels for model selection  
Our work is inspired by [9] in that we seek to use Support 
Vector Machines by exploiting a correspondence between 
data and model. Our work differs in two points. First, the 
data-model correspondence does not involve training but 
exploits prior information about the task. Our approach can 
thus seem less generic than the one in [9] but one should 
note that the training of a model from a single data is 
generally not feasible without prior information. Second, 
our method may be used in two ways: for building a 
powerful discriminant function for sequence classification; 
and for learning efficient generative models able to perform 
segmentation (cf. Fig. 1).   
In the following, we assume that there exists a data-model 
association. Hence, training is performed based on a 
training sample database and a database of 
associated generative models
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the kernels that we used on these models.  
A first method that we considered consists of defining 
explicitly the projection function )(xφ . The idea here is to 
represent a data x by the probabilities of this data computed 
by the set of all models of all the classes.  In the two-class 
case, noting the model corresponding to the jth training 

sample for class i, 
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One can use standard kernel functions, for example 
Gaussian, between )(xφ and ( )yφ : 
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where γ is a constant. In order to simplify the procedure, 
one can build )(xφ from the scores computed by a limited 
subset of models of each class only. In our experiments, we 
randomly choose 10 models per class and define )(xφ  as a 
vector of Nx10 probabilities, where N is the number of 
classes. We will call this method the Φ Kernel. 
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model set 
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We also used the kernel proposed by Moreno, exploiting 
the symmetric Kullback-Leibler divergence between two 
generative models λx and λy, built from two data x and y, 
we call this method KL Kernel.  The symmetric divergence 
is written as: 
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In our experiments, we estimated KL divergences on the 
training data with: 
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where z denotes samples in training data set. We used the 
following kernel: 
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At last, we used the Fisher Score as in [5] with a Gaussian 
kernel. This will be called the Fisher Score kernel. 

3.3. Data to model transformation procedure 
Our approach relies on a procedure that transforms a 
sample in a local generative model. In [9] this 
transformation is done through the learning of a statistical 
model (a mixture of Gaussian distributions) from a sample. 
This is possible in this case since each sample data consists 
of a speech signal of a few tens of seconds from which such 
a generative model may be learned. Of course, this 
approach stands for simple enough generative models that 
can be learned with only one training or test sample.  
More generally, this transformation may be the result of a, 
possibly optimal but not necessarily, training step. Such a 
transformation may indeed be viewed as a non linear 
mapping from the original input space into a feature space. 
In our experiments we investigated both a very simple 
transformation for artificial data and a more sophisticated 
transformation for on-line handwriting signals that is based 
on prior knowledge about on-line handwriting signals and 
on-line handwriting recognition. As we will see our 
framework may be viewed as a way to exploit efficient 
kernels based on prior knowledge about the data and the 
task. This is, in our mind, an interesting idea since first, 
designing efficient kernels is generally a complex task and 



second, there is often enough knowledge to allow designing 
an efficient data-to-model transformation. 

3.4. Learning prior component weights 
As discussed above, the learning of a SVM with a kernel 
defined on generative models allows selecting the 
components of the mixture models, i.e. the in Eq. (1). To 
complete the learning requires learning mixture 
coefficients, . We propose here to seek coefficients 
optimizing the discriminating criterion: 
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where TS denotes the Training Set. This criterion is the 
product of the posterior class probabilities of the training 
data, the  models remaining fixed. Taking the logarithm, 
one thus seeks to maximize: 
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where TSi denotes the subset of the training samples for 
class i in TS. We optimize the criterion with a gradient 
algorithm by deriving the criterion J with respect to . 
One effect of optimizing this criterion is that a significant 
part of the weights converge towards 0, then identifying 
useless models for discrimination.  
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4. On-line handwritten digits recognition 
We report experiments that we carried out on online 
handwriting signals (temporal sequence of points captured 
via an electronic tablet).  We present the database, discuss 
the data-to-model correspondence and provide results. 

4.1. Database  
We worked on a part of the UNIPEN database [3], an 
international benchmark database in the handwriting 
recognition field. Our experiments have been performed 
with signals corresponding to the 10 digits written by more 
than 200 writers. We use about 16000 samples, 33% for 
training and 66% for testing. Each experimental result is an 
average result obtained on 3 experiments. 

4.2. Data to model transformation 
Handwriting signals are much variable (there are a few 
allograph for a character), so that the use of mixture of 
models or systems based on typical writings is very 
popular.  A character is often modelled with a mixture of 
models, most often left right Markov models, each 
corresponds to an allograph. Training such a mixture model 
is not easy since the number of allograph as well as the 
topology of Markovian models must be tuned by hand. A 
number of studies were carried out to completely learn 

character models from the data [1],[7],[8]. They all rely on 
the building of one model (e.g. HMM) from one sample 
signal and exploit a representation of handwriting signals as 
a sequence of direction codes. We use in this study the 
procedure proposed in [1]. The idea is to build, from one 
original signal, one HMM giving high likelihood to signals 
that look like the original one and giving low likelihood to 
signals that do not. Figure 2 illustrates this procedure 
schematically. A handwriting signal is first represented as a 
sequence of basic strokes belonging to a set of 36 
elementary strokes (represented in figure 3). There are 
straight lines uniformly distributed between 0° and 360° as 
well as slightly convex or concave strokes. The output of 
this preprocessing is a representation of the original signal 
as a sequence of elementary stroke sequence (e.g. es1, es21 
and es1 in figure 3). From this representation, one can build 
a left right HMM with as many states as there are basic 
strokes in the sequence (e.g. three states on the right in 
figure 5). An emission probability distribution is associated to 
each state; it is derived from the corresponding elementary 
stroke. For example, the “ideal” elementary stroke in the 
first and in the third states of the model in Figure 2 should 
be es1, so that the pdf in these states give high likelihoods to 
elementary strokes that are similar to this stroke. 

 
Fig. 2. Building a left right HMM from a sample. An online 
handwriting signal is segmented into a SLR, then a left right 
Markov mode is built from this sequence.  

 
Fig. 3. Set 36 elementary strokes used to represent handwriting 
signals- from left to right 12 straight lines (named es1 to es12), 12 
convex strokes (named es13 to es24) and 12 concave strokes 
(named es25 to es36). 

4.3. Results 
Table 1 summarizes the performances of various methods 
for the classification of digits. First rows correspond to 
generative models learned with our discriminant approach. 
Component models are selected using SVM with 

different kernels while prior coefficients are learned 
using the discriminant criterion discussed in §3.4. We also 
report accuracies for the purely discriminant SVM 
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functions, note that these latter systems cannot be used for 
segmentation tasks. First, the performances of the pure 
discriminant SVM functions much depend on the kernel 
used, since they range from 86% to almost 99%. Note here 
that the performance of the SVM function with KKL kernel 
(98.8%) is the best performance ever achieved on these 
data, to our knowledge. Note here that whatever the kernel 
used, performances of the generative systems are very 
close, about 95% with a non-discriminant training of priors 
and about 98% with a discriminant training of priors. Thus, 
although these kernels are not all well adapted to build a 
discriminant function, they seem equivalent for the design 
of generative systems.  Second, the generative systems 
whose elementary models are selected via SVM outperform 
the reference system in [8] dedicated to on-line 
handwriting. This system obtains a performance about 
97.2% on these data. Compared to these performances, the 
approaches proposed here reduce the error rate by 20% for 
the generative systems, and by about 60% for the SVM 
system with the KKL kernel. 
 

Table 1. Performance of SVM for the selection of the 
elementary models and as a discriminant function, 
compared to a non-discriminant reference system  [8]. 

Method KKL KΦ KFS 
Generative Models 97.9 98 98.1 
Discriminant fonction (SVM) 98.8 97.5 96.9 
Reference method [8] 97.2 

5. Two dimensional data  
We report here additional experiments performed on two-
dimensional data in order to put in evidence the behaviour 
of the method. We use here a database extracted from the 
pbvowel database [6], containing speech signals (vowel). 
These signals were preprocessed and are represented, after 
feature extraction, as two dimensional vectors (two first 
formants). There are 10 classes and we use approximately 
600 samples in training and 600 in test. We used a very 
simple transformation between sample data and model. The 
model associated with a sample is a Gaussian distribution 
whose mean is the sample and whose covariance matrix is 
proportional to the identity matrix. For a sample x, the 
associated model λx is a Gaussian law N(x, σ2. Id), where σ 
is shared by all the models built from samples. Its value 
was fixed empirically according to the average distance 
between two samples in the training database. 

5.1. Classification and segmentation results 
Table 2 reports classification results for generative models 
learned with our discriminant approach and pure 
discriminant SVM functions. As observed with on-line 
handwritten signals, the performance varies depending on 
the kernel. Best kernels for designing discriminant 

generative models are not necessarily the best kernels for 
designing a accurate SVM. Second, the generative systems 
learned with our discriminant approach perform similarly or 
better than pure SVM function, whatever the kernel. Also, 
the average model size of systems for generative systems is 
significantly less than the required number of support 
vectors necessary to achieve best results with the SVM 
system (10 instead of ~40). We also implemented a 
benchmark method by training generative models (as in Eq. 
(1)) to maximize training data Likelihood using an EM 
optimization algorithm, it achieves a recognition rate from 
73 to 78% when the number of components in the mixture 
ranges from 5 to 50. Compared to these results, the 
generative systems whose models are selected by SVM are 
better in average.  
 

Table 2. Classification accuracy on two dimensional 
data for generative models whose component models 
have been selected using SVM, and for pure SVM 
discriminant functions on generative models. 

Method KKL KΦ KFS 
Discriminant Generative Models 
Performance 77.5 78.3 78.5 
Model size 11 10 12 
SVM function 
Performance  76.2 73.3 78.5 
#Support Vectors per class 39 39 40 

 
Fig. 4 and Fig. 5 illustrate the idea behind model selection. 
These figures plot the training samples of the ten classes. 
They also plot for two generative systems the mean vectors 
of component Gaussian models in bold. Fig. 4 shows mean 
vectors of the non discriminant system while Fig. 5 shows 
support vectors of a discriminant system, where component 
models have been selected with the KL kernel. In Fig. 4 
selected models correspond to typical samples whereas in 
Fig. 5 selected models are at the border between classes. 
One can imagine that, at least, such a discriminant selection 
of generative models leads to smaller class models since 
there is no use selecting a model corresponding to non 
ambiguous data as is done by a non discriminant training 
technique. 
In order to evaluate the segmentation power of our 
generative systems, we used a Markov Model for 
generating artificial sequences of the vowel data. The 
model has ten states, one state for each of the ten classes. 
Each state emits randomly a feature vector corresponding to 
its class. We generated about 400 sequences for testing, 
with an average length of 60.  



 

Figure 4. Models learned with a non discriminant 
criterion (ML). Mean vectors of component Gaussian 
models are in bold.  

 

Figure 5. Model selection with KL Kernel. Samples 
corresponding to Support vector models are in bold. 

Table 3. Segmentation results (%error) on sequences 
for discriminant generative models learned with the 
KKL, the KΦ and the KFS kernels and for the standard 
non discriminant approach (Maximum Likelihood, ML).  

Method KKL KΦ ΚFS ML 
Performance 18.9 18.1 18.1 22.9 

 
Generative systems are learned with the training data as in 
previous section. For testing, we use a Hidden Markov 
Model with ten states. The emission probability distribution 
in a state is defined as the mixture of generative models 
learned for this class. The evaluation of segmentation is 
based on the string edit distance between the output label 
sequence and the original label sequence. As is usually 
done we consider as errors deletions and substitutions. 

Table 3 reports segmentation results as percentages of 
segmentation errors for various methods. As a reference, 
note that pure Maximum Likelihood estimation of 
generative models lead to 22.9% error rate. One can see 
that all systems whose models have been selected using 
SVM outperform ML estimated systems.  

6. Conclusion 
We studied in this paper discriminant methods for the 
training of mixtures of generative models. We considered 
the possibility of transforming the learning problem in a 
model selection problem that may be addressed using 
Support Vector Machines. The performance obtained 
demonstrate the ability of the method to build discriminant 
generative models able to cope efficiently with sequence 
classification as well as with segmentation. We plan to 
validate this work on on-line handwriting word recognition. 
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