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Abstract 
 
An on-line handwritten character recognition 

technique based on a template matching distance is 
proposed. In this method, the pen-direction features are 
quantized using the 8-level Freeman chain coding scheme 
and the dominant points of the stroke are identified using 
the first difference of the chain code. The distance between 
two symbols results from the difference of the respective 
chain codes of the variable speed normalization of 
dominant points weighted by the local length proportions 
of the strokes. The proposed technique was tested on two 
datasets and showed a recognition rate of 92 % in the top 
1 choice. 

Keywords: on-line character recognition, template 
matching distance, Freeman chain code, dominant points, 
variable speed normalization. 

1. Introduction 
In this paper we propose a system that recognizes 

online handwritten mathematical symbols. The task of 
designing a mathematical recognizer becomes difficult as 
the number of symbols that the system has to process 
becomes large. The database of such a system varies from 
symbols including Latin and Greek letters and numerals to 
more specialized mathematical symbols like summation, 
integral, gradient etc. In addition, mathematical symbols 
vary in sizes (e.g. the sum operator is very large) and even 
the same symbol appear in different sizes (e.g. subscripts). 
Furthermore, there is a great variance in the writing style 
of each writer. As a result, the task of mathematical 
symbol recognition involves too many comparisons and 
becomes time consuming as the system has to process a 
large number of symbol classes [1]. 

There has been a significant amount of research in the 
field of recognition of online mathematical symbols [2, 8] 
using features based on the Freeman chain code and many 
more in the field of online handwritten character 
recognition [1, 4, 7, 9].  For the comparison of chain code 
sequences there have been proposed approaches that are 

based on elastic matching techniques [9] or techniques [2] 
that aim to modify the strokes under consideration so that 
they are represented by the same number of elements. Both 
approaches are applied on the chain code sequences 
resulted from the original number of points of the strokes 
and have an increased complexity compared to methods 
that are applied to a reduced features sequence. 
Approaches that overcome the problem of the complexity 
involve the use of Hidden Markov Model (HMM) [10] or 
Neural Networks [6] for the comparison of feature 
sequences. 

In order to reduce the complexity of the recognition 
process, we propose a representation that is based on the 
features extracted only from the trajectory of the dominant 
points of the symbol, i.e. points that include the most 
important information regarding the shape of the symbol. 
Before applying the distance measure between two 
sequences, we apply a merging technique that is equivalent 
to a type of variable writing speed normalization of the 
strokes in order to produce sequences of equal number of 
elements. 

We have obtained experimental results comparing the 
recognition rates between the full features sequences and 
the reduced features sequences on two datasets.  We have 
concluded that the proposed method increases significantly 
the throughput by having only a slight effect on the 
recognition rate.  

The organization of the presentation is as follows. In 
Section 2 we present the feature representation of a 
symbol. Section 3 deals with the variable speed 
normalization of the symbols and their comparison.   
Section 4 discusses the experimental results and in Section 
5 we present our conclusions. 

2. Feature extraction  
The input data is handwritten mathematical symbols 

that are written using the pen on the digitizer of a Tablet 
PC. Each symbol consists of one or more strokes and for 
each stroke a series of pen-coordinates through time is 
stored. Some necessary preprocessing steps are being 
carried out, such as elimination of the repeated points, 
smoothing, etc.  
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th point of the stroke and 
Nm the total number of points of the stroke.  The pen-
direction feature at the nth point of the stroke results from 
the angle of the slope of the segment between the nth and 
the (n+1)th point, i.e., 
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Using the 8-level Freeman code, the resulted slope 

angle at the nth point is quantized to an integer from 0 to 7.  
A stroke is now represented as a sequence 

 of  direction 

codes.   
{ }, 1... 1m m

n mS c n N= = − {0,1,...,7m
nc ∈

The dominant points of the stroke are located by 
finding the elements of the direction code sequence, for 
which the first difference is a positive number. The first 
difference of the chain code is defined by counting the 
code changes between successive elements of the chain 
code sequence [3]. Let Km<Nm be the number of dominant 
points of the stroke. Instead of the original sequence of 
chain codes, we are now focusing on the chain codes of 
the dominant points (Figure 2). 

 

Figure 1. (a) Original and (b) dominant points of a 
symbol. 

In addition to the quantized direction features of the 
dominant points, we also calculate the proportion of the 
length of the segment between the kth and the (k+1)th 
dominant points with respect to the total length of the 
stroke, as follows:   
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where kl∆ is the Euclidean distance between the kth and the 
(k+1)th dominant points. As a result, a stroke is now 
represented as a sequence of the 2-tuple of the local 
direction and the local length proportion between 
successive dominant points of the stroke, that is, 

{ }( , ), 1... 1m m m
k k mS c n Kλ= = − , with { }0,1,...,7m

kc ∈ and 

. This representation of a stroke can be read as 
“at each dominant point towards which direction and for 
how long in comparison to the total length of the stroke 
one has to move in order to reproduce the stroke” (Figure 
2).    

[0,1]m
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Figure 2. Quantized symbol representation using the 
8-level Freeman chain code. 

3. Classification 
The classification is based on the nearest neighbor of a 

template based matching distance. Let us denote by 
{ }, 1,...,m

T T TS S m M= = the test symbol, where MT is the 

number of strokes and the 

representation of the respective constituent strokes.  
Similarly, let us denote by 

{ }( , ), 1... 1m m m m
T k k TS c k Kλ= = −

{ }, 1,...,l
R R RS S l M= =  one of 

the reference symbols, where MR is the number of strokes 
of the reference symbol and  

the respective constituent strokes.  We consider the case 
where the two symbols have the same number of strokes, 
i.e. M

{ }( , ), 1... 1l l l l
R k k RS c k Kλ= = −

T = MR = M. Although the number of strokes is the 
same, the stroke correspondence is not always the same, 
since the writing order of the strokes may vary. Let us 
define a one-to-one correspondence of the strokes by the 
ordered pairs { }( , ),  , 1,...,m l m l M= consisted of the mth 



  
 
stroke of the tested symbol and the lth stroke of the 
reference symbol. In Figure 3a, the vertical stroke of the 
plus symbol precedes the crossing horizontal stroke, 
whereas in Figure 3b the vertical stroke follows the 
crossing horizontal stroke. 
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Figure 3. Stroke correspondence between test and 
reference symbol. 

The correct stroke correspondence is found by 
minimizing the sum of the distance between all 
combinations of stroke pairs of the test and reference 
symbols. Therefore, the distance between the test and 
reference symbols is calculated using the following 
formula 
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where is the distance between two strokes.  In 

most of the cases, the two strokes under consideration 
have a different number of elements, i.e. 

( ,m l
T Rd S S

l
TK K≠ . For 

this purpose we apply the following variable speed 
normalization technique by merging the two sequences. 
Starting from the sequence of the local relative length 
proportions, we define two new sequences as follows 
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that correspond to the cumulative local length up to the kth 
dominant point of the test and reference strokes 
respectively. Note also that both sequences start with 0 and 
the end points are equal to one, i.e., .  We 

then merge the two sequences defined above into a new 
sequence by preserving the 

ascending order of both { and{

1m l
T R

T R
K K

Λ = Λ =

{ },
( ) , 1,..., 2T R m l

r k T Rr K KΛ = + −

}T
kΛ }R

kΛ . The new 

sequence will have at most  distinct elements, 
should the individual sequences coincide only at the start 

and end points.  We re-define the stroke sequences for the 
test and the reference strokes as follows 

2m l
T RK K+ −

{ },ˆ ( , ), 1... 3m m m l m l
T r r T RS z r K Kλ= = + −   (6) 

and 
{ },ˆ ( , ), 1... 3l l m l m l

R r r T RS z r K Kλ= = + −  (7) 

with  
, ,

1
m l T R T R
r r rλ +

,= Λ −Λ  (8) 
and  

{ }
{ }

,

,
1

,  if , 1,..., 1

, if , 1,..., 1

m T R T m
k r k Tm

r m T R R l
k r k R

c k
z

c k+

⎧ K

K

Λ ∈ Λ = −⎪= ⎨
Λ ∈ Λ = −⎪⎩

 (9) 

and 

{ }
{ }

,

,
1

,  if , 1,..., 1

, if , 1,..., 1

l T R R l
k r k Rl

r l T R T m
k r k T

c k
z

c k+

⎧ K

K

Λ ∈ Λ = −⎪= ⎨
Λ ∈ Λ = −⎪⎩

.   (10) 

The new sequences  and ˆm
TS ˆm

RS  have the same number 
of elements and share the same relative normalized local 
length of the segment between consecutive dominant 
points.  

Let us give an illustrative example of the above 
technique. Consider the feature sequences of the reference 
and test symbols as shown in Table 1. The sequences of 
the cumulative local length proportions  and R

kΛ T
kΛ  result 

from the application of Eqs. 4 and 5.  

Table 1. Feature sequences and cumulative local 
length proportions of the reference and test symbols.  

Reference Symbol Test symbol 
Rck

R
kλ (%) R

kΛ (%) T
kc  

T
kλ  (%) T

kΛ  (%)

- -      0 - -       0 
3 0,63 0,63 4 15,35 15,35 
4 13,59 14,22 5 3,32 18,67 
5 2,18 16,40 6 10,60 29,27 
6 13,50 29,90 7 25,28 54,55 
7 14,37 44,27 6 4,31 58,86 
0 1,93 46,20 5 2,68 61,54 
7 6,77 52,97 4 3,89 65,43 
5 3,78 56,75 3 6,84 72,27 
4 9,23 65,98 2 6,21 78,48 
3 4,54 70,52 1 4,13 82,61 
2 8,38 78,90 2 2,22 84,83 
1 14,45 93,35 1 8,87 93,70 
2 2,97 96,32 2 1,79 95,49 
1 1,44 97,76 1 4,51 100,00 
1 2,24 100,00    

 



  
 

Note that the two sequences of the cumulative local 
length have common the first and the last elements.  If we 
merge the two sequences into a new one by preserving the 
ascending order, we obtain the sequence  that is 
shown in Table 2, where in bold-face we have denoted the 
elements that come from the reference symbol.  By taking 
the first difference of the above sequence we obtain from 
Eq. 8 the merged sequence of local length 
proportions

,
( )

T R
r kΛ

,m l
rλ .  Using Eqs. 9 and 10, we obtain the 

normalized chain codes for the reference and test symbol 
respectively.  

Table 2. Normalized feature sequences of the 
reference and test symbols.  

,
( )

T R
r kΛ  (%) ,m l

rλ (%) lzr  mzr  

0,00    
0,63 0,63 3 4 

14,22 13,59 4 4 
15,35 1,13 5 4 
16,40 1,05 5 5 
18,67 2,27 6 5 
29,27 10,60 6 6 
29,90 0,63 6 7 
44,27 14,37 7 7 
46,20 1,93 0 7 
52,97 6,77 7 7 
54,55 1,58 5 7 
56,75 2,20 5 6 
58,86 2,11 4 6 
61,54 2,68 4 5 
65,43 3,89 4 4 
65,98 0,55 4 3 
70,52 4,54 3 3 
72,27 1,75 2 3 
78,48 6,21 2 2 
78,90 0,42 2 1 
82,61 3,71 1 1 
84,83 2,22 1 2 
93,35 8,52 1 1 
93,70 0,35 2 1 
95,49 1,79 2 2 
96,32 0,83 2 1 
97,76 1,44 1 1 

100,00 2,24 1 1 
 

An illustration of the interpolation of the elements of 
the test symbol into the sequence of the reference symbol 
and vice versa is shown in Figure 4.  

 

Figure 4. (a) Interpolation of reference symbol points 
(dots) into the test symbol points (diamonds) and (b) 
interpolation of test symbol points (dots) into the 
reference symbol (diamonds). 

The distance between the strokes is calculated as 
follows 

( ) (
3

,

1

, 4 4 |
T RK K
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Note that ( )0 ,m l
T Rd S S 4≤ ≤ since the difference of the 

chain codes is normalized to values in the range from 0 up 
to 4. In the example of Figure 4, the distance between the 
two symbols is 0.25. 

4. Experimental Results 
Two different online datasets are used for the purpose 

of this paper. The dataset (LVZE) in [3] consists of 48 
distinct symbols written by 11 writers. Each one wrote 
every symbol 10 times for the training set and 12 times for 
the test set.  The samples are taken with a Tablet PC and 
are encoded in the UNIPEN format. The 48 symbols of the 
dataset include, the characters of the Latin alphabet (a-z), 
the numerals (0-9), and mathematical symbols such us the 
sum, the square root, the integral, the inequality symbols, 
the arithmetic operators and some special symbols such as 
the brackets and the parentheses.  

The ILSP dataset consists of handwriting samples of 
186 distinct symbols written by 50 writers and each one 
wrote every symbol 5 times. The distinct symbols include 
24 uppercase Greek letters (Α-Ω), 25 lowercase Greek 
letters (α-ω, ς) , 12 uppercase Latin letters (only those that 
do not appear in the uppercase Greek letters, i.e. C, D, F, 
G, J, L, Q, R, S, U, V, W), 25 lowercase Latin letters (all 



  
 
except o, which is the same as the Greek omikron), 10 
numerals (0-9) and 90 mathematical symbols among of 
which 13 operators and relational symbols (+, -, <, >, etc.), 
5 logical operators (∧, ∨, etc.), 10 set operators (∩, ∪, ⊆, 
etc.), 5 set symbols ( , etc.), 5 types of arrows (→, ↑, 
etc.), 24 functions (sin, cos, log, etc.), 5 limit symbols, 2 
types of integrals, the summation and the product symbol, 
2 symbols from geometry, 4 punctuation symbols, 6 
symbols of parentheses, brackets and braces and 7 symbols 
used as modifiers such us the tilde, the hat, etc.   In 
addition, each writer wrote 54 equations from the wide 
range of mathematical topics (set theory, mathematical 
logic, real analysis, geometry, etc.) that involve at least 
once the 90 mathematical symbols giving us in total 62100 
symbols. The samples were collected with a Tablet PC and 
stored in the UNIPEN format. From the collected symbols, 
27900 were used for training and 18600 for testing.  

,N Z

On each dataset we run two experiments. In the first 
experiment we applied the template matching distance on 
the full set of the Freeman chain code (FFCC) and in the 
second on the reduced (only the dominant points) chain 
code sequence (RFCC). The results of the experiments for 
the two datasets are summarized in Tables 3 and 4. 
Comparing the results between FFCC and RFCC, one can 
observe that the recognition rate in the later has an 
insignificant decline. In addition, the recognition rates for 
the LVZE dataset are comparable to the results of [5]. 

Table 3. Recognition rate (%) in top N choice on the 
LVZE dataset.  

 Top 1 Top 2 Top 3 Top5 Top 10 
FFCC 92.13 95.15 96.58 97.91 98.94 
RFCC 92.00 95.49 96.85 97.82 98.81 

Table 4. Recognition rate (%) in top N choices on the 
ILSP dataset. 

 Top 1 Top 2 Top 3 Top5 Top 10 
FFCC 92.35 95.15 96.63 97.94 98.97 
RFCC 92.21 95.44 96.95 97.89 98.84 
 

The standard deviation of the recognition rates with 
respect to the writers is 1.85 for the Top 1 choice of the 
FFCC and 2.18 for the Top 1 choice of the RFCC on the 
LVZE dataset. In Figure 5 we show the variation in the 
recognition rate for the writers of the LVZE test set. 
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Figure 5. Variation of recognition rates of FFCC and 
RFCC among the writers of the LVZE dataset.  

The RFCC sequence has much fewer elements than the 
FFCC sequence. In particular, the average number of 
elements in the LVZE dataset for a symbol with the RFCC 
representation is 10.79, which is 4.4 times less than the 
respective number of elements, that is, 47.53, for the 
FFCC representation. At the same time, the reduction of 
the recognition accuracy does not exceed the 0.15%. 
Figure 6 shows the average number of elements using the 
FFCC and the RFCC representations for each symbol class 
of the LVZE dataset.  
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Figure 6. Average number of points of FFCC and 
RFCC for the symbols of the LVZE dataset. 

Another experiment was conducted on the symbols 
extracted from the mathematical equations of the ILSP 
dataset.  The overall recognition rate of the RFCC on this 
dataset was 94.18%.  However, it must be noted that the 
instances of each distinct varied from symbol to symbol, 
e.g. the equal sign appears almost in every equation, 
whereas the integral symbol appears in two equations. 

 

5. Conclusions 
In this paper, we propose a template matching method 

for mathematical symbol recognition. The symbol’s 



  
 

e local length proportions of the normalized 
sequences. 
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