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Abstract
Problems in local ambiguities in handwritten mathe-

matical expressions are often resolved at the global level.
For a well performing recognizer, multiple local hypothe-
ses should be kept as long as possible until the ambigui-
ties are resolved by a global analysis. We propose a lay-
ered search framework for handwritten mathematical ex-
pression (ME) recognition. From given handwritten input
strokes, ME structures are constructed through adding a
symbol hypothesis one by one, considering every possible
symbol identity and spatial relationship with the existing
structure. A cost reflecting the likelihood of a structure is
estimated for each newly expanded layer so that a best-
first search algorithm is applied to seek the most likely
structure. The elegance of our method is in that while
all the possibilities are examined, the search complexity
is made manageable by applying admissible heuristics.
Further complexity reduction is achieved by delaying the
symbol identity decision. Unless a symbol identity causes
structural alternatives for the remaining input strokes, the
identity can be determined after the complete structure is
fixed. Such a delayed decision reduces undesirable search
space expansion. In an implementation targeting high
school level MEs, our method achieved high speed with
a high level of accuracy which resulted from the system’s
capacity to examine a large number of possibilities.

Keywords: Handwritten mathematical expression
recognition, Structural analysis, Layered search tree, Ad-
missible heuristic, Delayed decision of symbol identity

1. Introduction

Since handwriting is a convenient and natural way
to input mathematical expressions (MEs) into computers,
and the recognition of handwritten ME has been studied
for several decades, it is still an area of research with many
challenges. The difficulty mainly comes from the two-
dimensional nature of ME structures and the large varia-
tions in shape commonly observed in handwriting.

A part of a handwritten ME can yield more than one
interpretation if we see the shape in isolation. We call this

local ambiguity. In the example in Figure 1, the hand-
writing input in the solid box can be interpreted as either
‘
∑

’ or a combination of ‘−’ (fraction) and ‘2’. The local
ambiguity, however, is easily resolved at a global level.
As shown in Figure 1, the part becomes clearer when it is
analyzed along with its neighbors. Therefore, the possible
interpretations should be kept as local hypotheses until the
ambiguity is resolved by a global analysis.

(b)(a)

Figure 1 . An example case of local ambiguity. The
handwriting input in the solid-lined box would yield
more than one interpretation. (a) combination of ‘−’
(fraction) and ‘2’. (b) ‘

P

’

Keeping multiple local hypotheses requires a huge
amount of storage and computation even in the case of rel-
atively small MEs. While the recognizer should generate
as many local hypotheses as possible in order to cover all
the writing variations, it should also generate as small lo-
cal hypotheses as possible to reduce the requirement. As a
result, a compromise needs to be made between complex-
ity and performance.

Previous work has usually divided the ME recognition
into three phases:symbol segmentation, symbol recogni-
tionandstructural analysis[1]. While a few attempts tried
to improve the performance of symbol segmentation it-
self [5, 6], most attempts have assumed that symbols are
well segmented from each other [2, 3, 4]. This assump-
tion makes the recognizer’s job easy because segmenta-
tion reduces the number of local hypotheses. However, it
is too strong an assumption because obtaining an accept-
able segmentation from natural handwriting samples is a
difficult task, and the errors occurring in the segmentation
phase cannot be easily recovered in latter ones.

Grammars have been frequently applied in ME recog-
nition study [7, 8, 9]. However, the use of grammar alone



is not effective in reducing the number of local hypothe-
ses in handwritten ME recognition. This is because many
alternative interpretations still have to be analyzed even
after taking grammars into consideration. Furthermore,
irregularity in the symbol writing order in MEs makes the
application of the grammar difficult. Therefore, [7] and
[8] implicitly assumed a given writing order, while [9]
mainly targeted printed MEs.

In this paper, we focus the handwritten ME recogni-
tion problem on the search for the most likely structure of
a given handwritten set of input strokes. Initially the struc-
ture is null. Then the structure is expanded incrementally
by adding a symbol hypothesis one by one. The symbol
hypothesis is made by consuming the input strokes with
respect to every possible symbol identity and their spatial
relationship with its parent structure.

Such expansion creates a layered search tree where
nodes represent the partial structures of the ME so far con-
structed. For each newly expanded layer, a cost reflecting
the likelihood of the structure is estimated so that the best-
first search algorithm [10] may be applied.

The elegance of our method is in that while all the
possible structures are examined, the search complexity
is made manageable by applying an admissible heuristic
which reflects the likelihood of the partial structure to ac-
cept unanalyzed remaining input strokes.

Moreover, further search space reduction is achieved
by delaying the symbol identity decision. Unless a sym-
bol’s identity causes structural alternatives, the identity
can be determined after the entire structure is fixed. The
delayed decision not only reduces undesirable search
space expansion, but also allows the symbol identity deci-
sions to be done at the global level.

The rest of the paper is organized as follows. Section 2
describes the proposed layered search framework for ME
recognition. Section 3 explains how to represent a ME
interpretation, and section 4 describes the cost function
to estimate the likelihood of the interpretation. Section
5 explains strategies for more efficient searches. The ex-
perimental results are shown in section 6, and section 7
discusses conclusions and future work.

2. Layered Search Tree for ME Recognition

ME recognition is formulated as searching for the
most likely interpretationS∗ for the inputX. It is equiv-
alent to finding the minimum cost interpretation if we de-
fine the cost of an interpretationC(S) as the negative log
likelihood of the interpretationS, as shown in Eq. 1. How-
ever, enumerating all the possible interpretations{S} is
infeasible because the number of possible interpretations
is huge even for a moderate size ME recognition problem.

S∗ = arg min
S∈{S}

C(S) (1)

To avoid the enumeration, we incrementally construct
a layered search tree to apply the best-first search algo-
rithm [10]. In the layered search tree, each nodeNi holds
an interpretationSi and remaining input strokesX \ Si.
An interpretation is calledcompleteif it has consumed
all the input strokes, i.e., the remaining input strokes are
empty. Otherwise, it is calledpartial. The edge denotes
the expansion of the partial interpretation by adding a
symbol. Each edge holds an added symbol identity with
the consumed strokes, and the spatial relationship of the
symbol to the parent interpretation.

Initially the search tree starts with the null interpreta-
tion. Then the interpretation is expanded by adding sym-
bol hypotheses. Several alternative interpretations would
be created according to the symbol identity, consumed
strokes to make the symbol, and the symbol’s spatial rela-
tionship to the existing interpretation. Such alternatives
create corresponding branches in the search tree. The
node expansion is terminated when a node has a complete
interpretation.

Figure 2 shows an example of a layered search tree.
When handwritten input strokes are given as in Fig-
ure 2(a), the layered search tree is constructed as in Fig-
ure 2(b). Figure 2(c) shows what a node and an edge hold.
As a node is expanded, its interpretation grows, adding a
symbol one by one. Correspondingly the remaining input
strokes are reduced.

The best-first search algorithm is applied on the search
tree. An evaluation function is needed to define the ‘best’
for the algorithm. The evaluation functionf(Ni) of a
nodeNi is defined as:

f(Ni) = C(Si) + h(Ni), (2)

whereC(Si) is the cost of the partial interpretationSi

which is the negative log likelihood, andh(Ni) is a heuris-
tic function which estimates the additional cost of the par-
tial interpretationSi to be a complete interpretation.

If the h(Ni) is always lower than the true remaining
cost, we call the heuristicadmissible[10]. With admis-
sible heuristics, the best-first search algorithm guarantees
that the goal found first is the minimum cost. In our case,
the complete interpretation found first is the minimum
cost one, that is, the most plausible interpretation of the
given handwritten input strokes.

3. Interpretation Representation

An interpretation of a ME is a structure which holds
the component strokes and their relationships. We repre-
sent the structure as a symbol relation tree (SRT) [11].

A SRT is formed by a dominant symbol and its sub-
ordinated sub-expressions as nodes. The dominant sym-
bol is a prime symbol which dictates the overall struc-
ture of the expression. The spatial relationships between
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Figure 2 . An example of a layered search tree.
(a) Handwritten input strokes. (b) Part of the layered
search tree. Nodes are labeled with their interpreta-
tion. The numbers in the circles are the expansion or-
der by the best-first search algorithm (c) A path from
the root node to a complete interpretation node. The
nodes hold its interpretation and the remaining input
strokes. The edges hold the consumed strokes, the
symbol identity, and the spatial relationship with its
parent interpretation.

the dominant symbol and its sub-expressions are repre-
sented as links. The spatial relationships among the sub-
expressions are not represented, because we believe that
they have been effectively encoded by the spatial rela-
tionships with the dominant symbol. Each of the sub-
expressions is also represented recursively as a SRT with
its own dominant symbol.

The spatial relationships are categorized into one of
six types: inside,over, under, superscript,subscriptand
right. We believe such categories are sufficient for han-
dling most MEs. An example of SRT representation is
shown in Figure 3.

4. Cost of Interpretation

The costC(S), which is needed for the best-first
search algorithm, is defined as the penalty of the input
strokes when they are interpreted as SRTS. It is the sum
of three negative log likelihoods:

C(S) = αCY (S) + βCR(S) + γCG(S). (3)

The cost functionC(S) reflects negatively the score of the
symbol recognition resultCY (S), the degree of fitness for
the spatial relationshipCR(S), and the contextual validity
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Figure 3 . Symbol relation tree (SRT) representation.
(a) Handwritten input. si denotes stroke. (b) The in-
tended interpretation. (c) SRT representing the in-
tended interpretation. Each rectangle denotes a sub-
expression, and the dominant symbol of each sub-
expression is denoted as a circle.

CG(S), whereα, β andγ are coefficients for adjusting the
relative contribution.

The score of the symbol recognition is defined as the
sum of individual symbol likelihoods, which are obtained
by a symbol recognizer. In our implementation, the sym-
bol recognizer is developed based on the template match-
ing.

The degree of fitness for the spatial relationship as a
structure is difficult to estimate directly. We obtain it by
combining all the degree of fitness for the spatial relation-
ship of each symbol as:

CR(S) =
∑
yi∈S

CR(yi, S). (4)

The degree of fitness for the spatial relationship of a sym-
bol CR(yi, S) is determined by analyzing the spatial lay-
out in each sub-expression that contains the symbol. It is
formally written as:

CR(yi, S) =
∑

S′∈sub(yi,S)

Cr(d(S
′
), yi, t(S

′
)), (5)

wheresub(yi, S) is a set of sub-expressions containing the
symbolyi, d(S

′
) is the dominant symbol andt(S

′
) is the

type of the expressionS
′
.

Following the convention of [8], we defined fuzzy
membership functions for computing the degree of fit-
ness between a symbol and its dominant symbol under
a specific spatial relationship type. The fuzzy member-
ship functions are defined separately according to symbol
classes of the dominant and subordinated symbols, and
the spatial relationship type between the two symbols, as



follows:

Cr(yi, yj , t) = Fclass(yi),class(yj),t(yi, yj). (6)

We can estimate the cost increment contributed by
each symbol using the individual symbol likelihood
CY (yi) and the degree of fitness for the spatial relation-
ship for the symbolCR(yi, S). This will be actively uti-
lized for the heuristic cost estimation in the following sec-
tion.

Lastly, the contextual validity is to estimate how well
the mathematical grammar or the mathematical conven-
tions are satisfied. In the current implementation, we
implemented several simple yes-no checking schemes
such as the matching of parentheses and the existence
of operands in ‘−’ (fraction), ‘

∑
’, ‘√ ’ and ‘

∫
’ (inte-

gral). Language models and other complicated contextual
knowledge could be used, but we retain it as work for the
future.

5. Strategies for Efficient Search

In applying the best-first search algorithm, we pro-
posed three strategies for a more efficient search: (1) pro-
viding fixed orders of symbol introduction to avoid gen-
erating the same interpretation through different paths in
the layered search tree, (2) using an admissible heuristic
to speed up the search, and (3) delaying symbol identity
decisions during the structure search if a symbol’s identity
does not cause structural alternatives.

5.1. Order of Symbol Introduction

To avoid generating the same interpretation through
different paths in the layered search tree, we fix the order
of symbol addition to the existing interpretation as fol-
lows. Firstly, a dominant symbol should be introduced
before any of the symbols in its subordinates. So, the
dominant symbol is always located higher than dominated
symbol in the upside-down search tree.

Secondly, when a dominant symbol has multiple sub-
ordinates, their order is determined by their spatial rela-
tionship types. Precedence is set for spatial relationship
types asinside> superscript> subscript> over> under
> right. With such a fixed order, the same structure is
not appears no more than once in the search tree gener-
ation. Note that this ordering does not restrict a writer’s
own pace in handwriting, but it is applied internally only
in the search.

5.2. Admissible Heuristic

One of the advantages of the best-first search algo-
rithm is that the problem solving heuristics can be easily
incorporated. We proposed an admissible heuristic to es-
timate the cost increment from current interpretation to a
complete interpretation.

The true cost increment from a partial interpretation
to the best complete interpretation is difficult to estimate
directly. However, we can underestimate the cost incre-
ment by estimating it separately for each strokesj of the
remaining input strokesX \ Si as:

h(Ni) =
∑

sj∈X\Si

h(sj , Si). (7)

The cost increment for each remaining strokeh(sj , Si)
is computed as follows. LetY (sj , X\Si) denote the sym-
bol hypothesis set which containssj among those con-
structed by the remaining input strokes. Thenh(sj , Si) is
the minimum cost increment among every possible sym-
bol hypothesis inY (sj , X\Si), normalized by the number
of strokes for the symbol hypothesis||yk||, as:

h(sj , Si) = min
yk∈Y (sj ,X\Si)

1
||yk||

h(yk, Si). (8)

Let Exp(Si, yk) be the set of every expansion us-
ing the symbol hypothesisyk, then the cost increment
h(yk, Si) contributed by the symbol hypothesisyk is the
minimum amongExp(Si, yk) as:

h(yk, Si) = min
S′∈Exp(Si,yk)

αCY (yk)+βCR(yk, S
′
). (9)

The above development offers two nice features.
Firstly, we can rank symbol hypotheses in terms of the
contribution to the search of the complete interpretation,
as we can estimate the cost contributed by each symbol
hypothesis as shown in section 4. Secondly, as the heuris-
tic regards only the minimum cost increment for each re-
maining input stroke, it will always underestimate the true
cost increment. Therefore, the heuristic isadmissibleto
guarantee to find the least cost complete interpretation
first [10].

Since the heuristic utilizes information of not only the
symbol recognition score, but also the degree of fitness for
the spatial relationship, we call it astructural heuristic.
Note that the structural heuristic is more informative than
asymbol heuristicwhich uses only the symbol recognition
score, and, therefore, yields more efficient search.

5.3. Delayed Decision of Symbol Identity

Further reduction of search space can be achieved by
delaying the decision of symbol identity. Unlike printed
MEs, it is hard to disambiguate the confusing pairs of
handwritten symbols in isolation, such as (‘C ’, ‘(’), (‘x’,
‘×’), (‘ S’, ‘

∫
’), (‘7 ’, ‘>’), etc. For example, the hand-

written strokes1 in Figure 3(a) may be recognized as not
only an integral ‘

∫
’, but also a capital letter ‘S’ or a small

letter ‘s’. With such different symbol identities, the search



generates multiple complete interpretations whose struc-
ture are the same except for the symbol identity ofs1, as
shown below.{∫ b

a

√
x

2
dx, Sb

a

√
x

2
dx, sb

a

√
x

2
dx, · · ·

}
(10)

We take advantage of such situations by searching for
structures without the symbol identities. Theunlabeled
interpretation is sought by generating structural alterna-
tives. The symbol identity is determined after a complete
unlabeled interpretation is found. An admissible heuris-
tic can be developed for the unlabeled interpretation by a
similar scheme described in section 5.2. The symbol iden-
tities in the complete unlabeled interpretation are found
with theViterbi decoding algorithm[12].

6. Experiments

To evaluate the proposed approach, we built a DB con-
sisting of high school level handwritten MEs from 13 writ-
ers. Each writer was requested to write 30 different ex-
pressions, each of which contained 5-24 symbols. As a
result, 390 MEs were collected and used in the experi-
ments.

In collecting handwriting samples, we stressed natural
writing. Expressions can be written in the writer’s own
pace in free writing order. However, two simple restric-
tions were imposed. A symbol should be written with
consecutive strokes in time, and any single symbol has
at most of 4 strokes, similarly with the assumption in [6].

The symbol recognizing module in our system is de-
veloped by simple template matching. To handle 98 sym-
bol classes which appear in high school mathematics, we
developed 262 templates, considering variability in sym-
bol shapes. Table 1 shows the symbols used in our system.

Table 1 . Symbols used in our system

Digit 0, 1, 2,· · · , 9
Alphabets A,· · ·,Z,a,· · ·,z (except ‘o’ and ‘O’)

Greeks α, β, θ, π, ∆
Special symbols +, −, ±, ×, ÷, =, ̸=, <, >, ≤, ≥

and operators :, !, →, ∞ ,−(fraction),
∫

,
∑

Parentheses (, ), {, }, [, ]
math. functions sin,cos,tan,csc,sec,cot,lim,log,ln

To evaluate the search efficiency of the proposed ap-
proach, we compared four search schemes. The first one
does not use any heuristics, so it becomes a uniform cost
search. The second one uses a simplified heuristic in
which the minimum cost increment is modified to reflect
only symbol recognition score, not the degree of fitness
for the spatial relationship. So we denote it as ‘symbol
heuristic’. The third one, denoted as ‘structural heuris-
tic’, uses the admissible heuristic proposed in this paper.

Finally, the last one, denoted as ‘proposed heuristic +
delayed decision’, uses the structural heuristic with the
delayed decision strategy.

The number of expanded nodes and elapsed time were
used as the measure of the comparison of the search effi-
ciency. As shown in Figure 4(a), the proposed approach
found a complete interpretation for 90.77% of cases with
25,000 node expansions, whereas the other approaches
found it for less than 80% of cases with 100,000 node ex-
pansions. Also, as shown in Figure 4(b), the proposed
approach found a complete interpretation for 90.26% of
the cases within 15 seconds, whereas the other approaches
found it for less than 85% of cases even spending more
than 60 seconds. These results show that the proposed ap-
proach could complete tasks spending a relatively small
amount of time and space.

(a) (b)

Figure 4 . Search efficiency Comparison: (a) by ex-
panded nodes, and (b) by elapsed time.

Recognition accuracy is the next item of evaluation.
The system obtained a recognition result of 385 of 390
cases within one minute. Table 2 shows the symbol level
accuracy of the system. The symbol recognition accuracy
89.0% is below our expectation. It is because too many
variants of some symbols were tested. However, the sys-
tem correctly identifies the structure in 93.6%. Such ro-
bustness is due to the fact that many local hypotheses are
analyzed during the search.

Table 2 . Symbol level accuarcy

MEs recognized within 1 minute 385 (98.7%)

Total number of 4,942
recognized symbols

Correctly segmented symbols 4,797 (97.1%)
Correctly placed symbols 4,624 (93.6%)

in the constructed structures
Correctly labeled symbols 4,396 (89.0%)

The system generates near misses, as well. Figure 5
shows the ME level spatial relationship accuracy. More
than 70% of cases were correctly constructed, and more



than 92% of cases had 3 or less errors in constructing
whole structures. This shows that our method is robust in
constructing structures with spatial relationships though
errors of symbol segmentation and symbol recognition
still occur in our system. These errors are less critical than
those related to spatial relationships because they can be
corrected independently at the symbol level.

Figure 5 . ME level spatial relationship accuracy.

Figure 6 shows examples of the correctly recognized
and the misrecognized. As shown in Figure 6(b), the local
ambiguity seems hard to be resolved by the search tech-
nique only. We learn that the global consistency checking
is mandatory to improve the recognition accuracy.

(a)

(b)

2 2 2( )( )
n n n n

ZZ g Z y x+ − = cos 1 sin
2

l
π α α+ = − 28 3l gθ =

Figure 6 . Examples used in the experiments. (a) Cor-
rect recognition. (b) Misrecognition.

7. Conclusions and Future Work

A layered search framework for handwritten ME
recognition is proposed. While all the possibilities are ex-
amined through the search, the search complexity is made
manageable by applying the admissible heuristic and de-
laying decisions of symbols’ identity. The evaluation ex-
periments showed that our method achieved high speed
with a high level of accuracy. We also found that even
though the symbol recognition accuracy is still below our

expectation, our system robustly construct a correct struc-
ture mainly due to the system’s capacity to examine a large
number of possibilities.

We also found that the overall performance would be
improved with global context processing such as grammar
checking, incorporation with language models and math-
ematical conventions. Future work will include incorpo-
ration of global text processing with improved symbol
recognition and structural analysis for more robust cost
estimation.
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