
Model Selection for LS-SVM : Application to Handwriting Recognition

Mathias M. Adankon and Mohamed Cheriet
Synchromedia Laboratory for Multimedia Communication in Telepresence,

École de Technologie Supérieure, Montréal, H3C 1K3, QC, Canada
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Abstract

Support Vector Machine(SVM) is a powerful classi-
fier used successfully in many pattern recognition prob-
lems. Furthermore, the good performance of SVM clas-
sifier has been shown in handwriting recognition field.
Least Squares SVM, like SVM, is based on the margin-
maximization principle performing structural risk, but its
training is easier: it is only needed to solve a convex lin-
ear problem rather than the quadratic problem in SVM.
In this paper, we propose to perform model selection for
Least Squares SVM by using empirical error criterion.
Experiments on handwriting character recognition show
the usefulness of this classifier and demonstrate that LS-
SVM generalization performance is improved with model
selection.

Keywords: LS-SVM, support vector machine, model
selection.

1. Introduction
Support vector machines are particular classifiers that

are based on the margin-maximization principle. They
perform structural risk minimization, which was intro-
duced to machine learning by Vapnik, and which have
yielded excellent generalization performance [22, 21].
For nonlinear problems, SVMs use the kernel trick to pro-
duce nonlinear boundaries. The idea behind kernels is to
map training data nonlinearly into a higher-dimensional
feature space via a mapping function Φ and to construct
a separating hyperplane that maximizes the margin. The
construction of the linear decision surface in this fea-
ture space only requires the evaluation of dot products
Φ(x).Φ(y) = k(x, y), where k() is called the kernel func-
tion [10, 15, 16].

Least squares support vector machine (LS-SVM) is a
variant of standard SVM. It is the result of the following
question: ”how much one may simplify the SVM formu-
lation without losing any of its advantages? ”, Suykens
and Vandewalle [12] proposed LS-SVM where the train-
ing algorithm solves a convex problem like SVM. It has

been shown by a meticulous empirical study that the gen-
eralization performance of LS-SVM is comparable to that
of SVM [19]. In addition, the training algorithm of LS-
SVM is very simplified since a linear problem is resolved
instead of a quadratic programming (QP) problem in the
SVM case.

Like SVM, LS-SVM is based on the margin-
maximization principle that performs structural risk and
it inherits the SVM generalization capacity. However,
the choice of the hyperparameters (regularization parame-
ter and kernel parameters) affects LS-SVM performance.
Thus, like SVM and other classifiers, model selection is
needed in order to obtain the best performance of the clas-
sifier. The classical method for choosing a good hyperpa-
rameters value is the cross-validation method based on the
exhaustive search but it becomes intractable when we have
many hyperparameters (for example if kernel parameters
are more than two). In this paper, we propose to tune LS-
SVM hyperparameters by using the empirical error crite-
rion [2] where an empirical estimate of the generaliza-
tion error is minimized through a validation set. We also
use the empirical error criterion in leave-one-out cross-
validation procedure where we consider the useful work
of Cawley et al. [6]. Experimental results made on hand-
writing recognition problem demonstrate the usefulness of
our method.

This paper is structured as follows. In sections 2, we
give a review for LS-SVM. In section 3, we present cer-
tain of the strategies proposed to improve the sparseness
of the LS-SVM. In section 4, we describe the exact leave-
one-out method developed by Cawley et al. [6] and an
automatic model selection for LS-SVM based on empir-
ical error minimization. In section 5, we provide exper-
imental results and discussion for handwriting character
recognition problems. In the last section, we conclude the
paper.

2 Least Squares Support Vector Machines
We first consider a binary classification problem. Let

us consider a dataset {(x1, y1), . . . , (x`, y`)} with xi ∈
Rd and yi ∈ {−1, 1}. Nonlinear SVM classifiers



use the kernel trick to produce nonlinear boundaries. The
decision function given by an SVM is :

f(x) = sign[w′φ(x) + b] (1)

where w and b are found by resolving the following
optimization problem which expresses the maximization
of the margin 1/‖w‖ and the minimization of the training
error :

min
w,b,ξ

1
2
w′w + C

∑̀

i=1

ξi (2)

subject to : yi[w′φ(x) + b] ≥ 1− ξi ∀i = 1, ..., ` (3)
ξi ≥ 0 ∀i = 1, ..., ` (4)

The Lagrangian of the precedent problem is :

L =
1
2
w′w + C

∑̀

i=1

ξi (5)

−
∑̀

i=1

αi[yi(w′φ(x) + b)− 1 + ξi]−
∑̀

i=1

λiξi

with the Lagrange multipliers αi ≥ 0 and λi ≥ 0 for all
i = 1, ..., `.

When, we apply the Lagrange differentiation theorem,
we obtain :

f(x) = sign[
∑̀

i=1

αiyik(xi, x) + b] (6)

with α solution of :

maximize : W (α) =
∑̀

i=1

αi− 1
2

∑̀

i,j=1

αiαjyiyjk(xi, xj)

(7)

subject to :
∑̀

i=1

αiyi = 0 and 0 ≤ αi ≤ C, i = 1, ..., `

The LS-SVM is an interesting variant of SVM pro-
posed by Suykens et al. [17, 12, 20, 25]. The standard
SVM classifier of Vapnik is modified for transforming the
QP problem to a linear problem. These modifications are
formulated as following in LS-SVM definition :

min
w,b,ξ

1
2
w′w + γ

1
2

∑̀

i=1

e2
i (8)

subject to : yi[w′φ(xi) + b] = 1− ei ∀i = 1, ..., ` (9)

The original SVM formulation is modified at two
points. First, the inequality constraints with the slack
variable ξi expressed in (3) are replaced by the equality
constraints with an error variable ei. Second, a squared
loss function is considered in the objective function.
These two essential modifications simplify the problem
that becomes linear.

The Lagrangian of problem (8) is expressed by :

L(w, b, e, α) =
1
2
w′w + γ

1
2

∑̀

i=1

e2
i (10)

−
∑̀

i=1

αi{yi[w′φ(x) + b]− 1 + ei}

where αi are Lagrange multipliers.

The conditions for optimality yield





∂L
∂w = 0 ⇒ w =

∑`
j=1 αjyjφ(xj)

∂L
∂b = 0 ⇒ ∑`

j=1 αjyj = 0
∂L
∂ej

= 0 ⇒ αj = γej , ∀j = 1, ..., `
∂L
∂αj

= 0 ⇒ yj [w′φ(xj) + b]− 1 + ej = 0 ∀i = j, ..., `

We can notice that the system obtained from the
Karush-Kuhn-Tucker conditions is linear. Its solution is
found by solving the system of linear equations expressed
in the following matrix form :

(
Q + γ−1I ~1′

~1 0

)(
α
b

)
=

(
Y
0

)
(11)

where : Qij = k(xi, xj)
Y = (y1, ..., y`)′

α = (α1, ..., α`)′
~1 = (1, ..., 1)

For the training of the LS-SVM, Suykens et al. [17, 12]
proposed an algorithm based on the conjugate gradient
technique. In [23], an improved algorithm also based
on the conjugate gradient is developed with reducing the
computational time. As other methods for training LS-
SVM, we can cite the SMO technique adapted to find the
LS-SVM solution and an algebraic method proposed by
Chua in [9].

3 Sparse Least Squares Support Vector Ma-
chines

The main problem associated with LS-SVM is the lack
of sparseness. Unlike SVM, almost all training points are



support vectors, α 6= 0. Then the kernel expansions of
LS-SVM are fully dense. This makes difficult to use the
LS-SVM in large scale applications.

To overcome this limitation of the LS-SVM, we may
suggest to train LS-SVM in primal space by using the ker-
nel PCA strategy for reducing the dimensionality. In the
literature, in order to reduce the complexity of original
LS-SVM, several methods have been proposed for reduc-
ing existing support vector expansions or training the clas-
sifier with a reduced set [18, 7, 11, 24, 13].

Suykens et al. [18] proposed to prune training exam-
ples that have smaller absolute support value. In [11], a
more sophisticated pruning method was proposed. In this
method, the examples which introduced the smallest ap-
proximate error are removed from the training set. The
two previous pruning methods kept outliers that have a
negative influence on the classifier in the reduced training
set. Also, the first method [18] remove from the train-
ing set the samples near the boundary and this decrease
the performance of the classifier. Li and al. [24] overcome
these two problems by proposing certain heuristics.

In [7, 8] a different way to obtain sparse LS-SVM is
proposed. The authors suggest first to perform a selec-
tion of reference vectors forming a basis for the subspace
populated by the data. Second, they modify the objec-
tive function by limiting the kernel expansions to the pre-
selected subspace. The main difference with other method
is the fact that all the training set is used, but a set of can-
didate support vectors is pre-selected. The objective func-
tion proposed in [7, 8] is as follows :

L(α, b) =
n∑

i=1

n∑

j=1

αiαjk(zi, zj) (12)

+ γ
∑̀

i=1


yi −

n∑

j=1

αj k̂(xi, zj)− b




2

where n ¿ ` is the number of reference vectors selected
zi.

This optimization problem like the original LS-SVM
can be expressed in the form of a system of linear equa-
tions :

(R + Z ′Z)
(

α
b

)
= Z ′

(
Y
0

)
(13)

with Z = [K̂,~1], K̂ is a ` × n matrix which element
is k̂(xi, zj) and

R =
(

γ−1K ~0′
~0 0

)

where K is a n× n matrix which element is k(zi, zj).

There are many approaches to select a set of reference
vectors [7, 3, 15], but almost all of them have heavy com-
putational cost.

Recently, Jia and al. [13] proposed fast sparse approx-
imation for LS-SVM (FSALS-SVM). The classifier is it-
eratively built by adding one basis function from a kernel-
based dictionary. The basis function is selected in order to
obtain the largest decrease in the LS-SVM objective func-
tion. The process is ended by using a flexible and stable
criterion. The algorithm proposed in [13] is fast and has
good generalization performance.

4 Model selection for LS-SVM
Model selection for LS-SVM is the task of selecting

the hyperparameters which yield the best performance of
the machine. The LS-SVM classifier has two types of hy-
perparameters: the regularization parameter γ which con-
trols the trade-off between the training error minimization
and the margin-maximization and the kernel parameters
which define the given kernel function.

4.1 Exact leave-one-out

Leave-one-out is the special case of cross-validation.
In k-fold cross-validation, we divide the available training
data into k subsets. We train the machine k times, each
time leaving out one of the subsets from training, and use
only the omitted subset to compute the given error crite-
rion. If k equals the training set size, this is called ”leave-
one-out” cross-validation.

Let [α(−i); b(−i)] represent the parameters of the LS-
SVM when the ith sample is omitted during the leave-one-
out cross-validation procedure. It is shown that :

(
α(−i)

b(−i)

)
= H−1

(−i)[y1, ..., yi−1, yi, ..., y`, 0] (14)

where

H =
(

Q + γ−1I ~0′
~0 0

)
(15)

and H(−i) is the matrix obtained when the ith sample is
omitted in H .

After some manipulations and using the block matrix
inversion lemma (see [6] for details), the following result
is obtained :

yi − f (−i)(xi) =
αi

H−1
ii

(16)

where f (−i)(xi) is the leave-one-out prediction for the
ith sample.



So, without computing ` times the parameters of the
machines, it is possible to compute the criterion error as
predicted residual sum-of-squares (PRESS),

PRESS =
∑̀

i=1

[
yi − f (−i)(xi)

]2

(17)

Similar work about the sparse LS-SVM is done in
[8]. So, leave-one-out cross-validation becomes a prac-
tical strategy for model selection for LS-SVM while it is
intractable with SVM.

4.2 Empirical Error Minimization

In this section, we describe model selection for the
LS-SVM using the empirical error criterion developed
in [2, 1] for tuning the kernel parameters of the original
SVM classifier.

Let us define ti = (yi + 1)/2; the empirical error is
given by the following expression:

Ei = |ti − p̂i| (18)

where p̂i is the estimated posterior probability corre-
sponding to the data example xi.

The estimated posterior probability is determinate by :

p̂i =
1

1 + exp(A.fi + B)
(19)

where fi = f(xi) and the parameters A and B are
fitted after minimizing the cross-entropy error [5] as Platt
proposed in [14]. In this paper, we use fixed values for
A and B, because we need to keep the continuity of the
empirical error expression for each validation sample at
each iteration.

We assume that the kernel function depends on
one or several parameters, encoded within the vector
θ = (θ1, . . . , θn) including the hyperparameter γ. The
optimization of these parameters is performed by a
gradient descent minimization algorithm [4] where the
objective function is E =

∑
Ei. However, sometimes

our problem is not convex, so we use many starting points
to overcome this situation. we can also use the simple
function fminsearch implemented in Matlab with different
starting points.

Despite the empirical error criterion was first devel-
oped for SVM, its use with LS-SVM is not just a direct
mapping. So, the derivative computing for LS-SVM
needs a careful analysis of its model.

1. Initialize the learning rate
2. Initialize the hyperparameters
3. Repeat until convergence

3.1 Train the LS-SVM
3.2 Compute the gradient of error
3.3 Estimate the learning rate
3.4 Update the hyperparameters

Figure 1. Descent gradient algorithm for the LS-SVM
hyperparameters optimization

The derivative of the empirical error with respect to θ
is evaluated using the validation dataset. Let us assume N
the size of the validation dataset, then :

∂E

∂θ
=

∂

∂θ

(
1
N

N∑

i=1

Ei

)
=

1
N

N∑

i=1

∂Ei

∂θ
(20)

Ei is expressed in terms of the estimated posterior
probability, which depends on the output fi of the LS-
SVM. Therefore, we can write :

∂Ei

∂θ
=

∂Ei

∂p̂i
∗ ∂p̂i

∂fi
∗ ∂fi

∂θ
(21)

According to equation (18), we have :

∂Ei

∂p̂i
=

∂|ti − p̂i|
∂p̂i

= −yi (22)

Considering equation (19), giving the expression of
the estimated posterior probability, the second part of the
gradient is :

∂p̂i

∂fi
= −Ap̂i(1− p̂i) (23)

For evaluating the last part of the gradient, we consider
the expression of the LS-SVM output.

∂fi

∂θ
=

∂

∂θ

( ∑̀

j=1

αjyjk(xj , xi) + b

)
(24)

=
∑̀

j=1

yj

[
∂k(xj , xi)

∂θ
αj +

∂αj

∂θ
k(xj , xi)

]
+

∂b

∂θ

In equation (24), the evaluation of the derivative
∂k(xj ,xi)

∂θ is easy and depends on the type of the kernel
to be chosen. But, for estimating the derivative ∂αj

∂θ , we
need the expression of the terms αj with respect to θ. For
this, we use equation (11) :



α̃ = H−1Ỹ where α̃ = (α; b) and Ỹ = (Y ; 0)
Then,

∂α̃

∂θ
=

∂H−1

∂θ
Ỹ + H−1 ∂Ỹ

∂θ

=
∂H−1

∂θ
Ỹ

For computing the components of the ∂H−1

∂θ , we use
the matrix relation proposed in [4].

∂α̃

∂θ
= −H−1 ∂H

∂θ
H−1Ỹ (25)

= −H−1 ∂H

∂θ
α̃

It is also possible to minimize the empirical er-
ror through the leave-one-out cross-validation procedure.
Considering equation (16), the leave-one-out prediction
for the ith sample is expressed by :

f (−i)(xi) = yi − αi

H−1
ii

(26)

Then, using the previous equality, we can compute
the empirical error for each training sample by using the
leave-one-out cross-validation procedure.

5 Experiments
We tested our model selection algorithm for the LS-

SVM on a handwritten recognition problem with USPS
database.

5.1 USPS database

USPS is the well known US Postal Service handwrit-
ten digits recognition corpus. The digits are represented
by normalized grey scale images of size 16 × 16. The
learning dataset contains 7291 samples (5291 for training
and 2000 for validation) while the testing dataset consists
of 2007 other samples.

5.2 Experimental setup

We have a multi-class problem with 10 classes. Then
we trained 10 machines by using the one-against-all strat-
egy. We tested the original LS-SVM and the Sparse LS-
SVM proposed in [13] and whose code is available at
http://see.xidian.edu.cn/graduate/lfbo. For each classifier,
the hyperparameters are optimized by using PRESS cri-
terion with exact leave-one-out (LOO) strategy and by
using empirical error criterion. Finally, we compute the
mean of the hyperparameters with the ten values obtained
from each classifier.

Table 1. Error rate in percent obtained on test set
with original LS-SVM and the Sparse LS-SVM. We
present the results with four different model selec-
tion techniques : empirical error criterion with vali-
dation set, LOO with PRESS criterion [6], LOO with
empirical error criterion and the classical grid search
method done in [13].

Original Sparse
LS-SVM LS-SVM

Empirical Error criterion 4.63 4.18
LOO with PRESS criterion 4.48 4.43
LOO with Empirical Error 4.53 4.03
Grid Search method 4.43 4.14

5.3 Results and Discussion

The results obtained are shown in Table 1, where we
report the results obtained with different model selection
techniques. Our results, obtained by Empirical Error min-
imization, are similar to those obtained by classical grid
search method, while the latter is quite costly in term of
computing time and becomes intractable when the hyper-
parameters are more than two. Note that the PRESS
statistic which is best suited to regression problems [8, 6],
is less adequate for LS-SVM classifier.

Also, we remark that the Sparse LS-SVM achieved
good generalization in comparison with the original LS-
SVM. The classifier obtained with the Sparse LS-SVM
algorithm has fewer support vectors, which reduces the
complexity of the machine. Thus, the regularization of
the classifier is reinforced. In figure 2, we plot the test
error rate and the number of support vectors according to
the model selection method with the Sparse LS-SVM. We
point out that the LOO procedure with Empirical Error
criterion give the best result in term of the machine com-
plexity and generalization confirming our approach.

Empirical Error LOO with PRESS LOO with Empirical Error Grid Search
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Figure 2. Figure shows the test error rate and the
number of support vectors according to the model se-
lection method with the Sparse LS-SVM.



In table II, we compare the Sparse LS-SVM with SVM
where we used Empirical Error criterion for performing
model selection. This experiment shows that the Sparse
LS-SVM is a good alternative for SVM. The results point
out that the Sparse LS-SVM achieves good performance
in term of accuracy, complexity and sparseness. More-
over, the classifier yield the best generalization perfor-
mance on this problem.

Table 2. Comparison between SVM and Sparse LS-
SVM : we perform the training of SVM with Joachims’
algorithm called SVMlight.

Original Sparse
SVM LS-SVM

Training time 45sec 44sec
Number of support vectors 5069 1932
Testing time 5.32sec 2.21sec
Test error 4.33 4.03

6 Conclusion
In this paper, we proposed a model selection for LS-

SVM which is a variant of the popular SVM. We per-
formed the model selection by using empirical error crite-
rion minimized on a validation set and through leave-one-
out procedure. We applied our algorithms on a handwrit-
ing recognition problem which gave promising results.
Comparing with SVM, the Sparse LS-SVM classifier, em-
powered by model selection based on empirical error cri-
terion, achieved higher performance. We may conclude
that the Sparse LS-SVM with model selection would be
an interesting alternative for SVM in pattern recognition
systems.
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