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Chapter One 
 
Introduction 
 

 

1.1 OCR: the Motivation  

Optical Character Recognition (OCR) is a branch of pattern recognition, and also a 

branch of computer vision. OCR has been extensively researched for more than four 

decades. With the advent of digital computers, many researchers and engineers have been 

engaged in this interesting topic. It is not only a newly developing topic due to many 

potential applications, such as bank check processing, postal mail sorting, automatic 

reading of tax forms and various handwritten and printed materials, but it is also a 

benchmark for testing and verifying new pattern recognition theories and algorithms.  

In recent years, many new classifiers and feature extraction algorithms have been 

proposed and tested on various OCR databases and these techniques have been used in 

wide applications. 

Numerous scientific papers and inventions in OCR have been reported in the literature. It 

can be said that OCR is one of the most important and active research fields in pattern 

recognition. Today, OCR research is addressing a diversified number of sophisticated 

problems. Important research in OCR includes degraded (heavy noise) omnifont text 

recognition, and analysis/recognition of complex documents (including texts, images, 

charts, tables and video documents). Handwritten numeral recognition, (as there are 

varieties of handwriting styles depending on an applicant’s age, gender, education, ethnic 
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background, etc.,  as well as the writer’s mood while writing), is a relatively difficult 

research field in OCR.  

 

1.2 Focus of This Thesis 

The focus of this thesis is the recognition and verification of unconstrained handwritten 

numerals, which is a challenging research project as these numerals are written without 

any constraints, (e.g., they are not all written in separate boxes, nor all written neatly, nor 

all using a specific type of pen). In addition, as mentioned before, unconstrained 

handwritten numerals have varieties of writing styles due to different backgrounds of the 

writers.  

Technically speaking, OCR systems pursue a high recognition rate while seeking the 

highest reliability, which makes it practical for recognizing unconstrained handwritten 

numerals. Here are some criteria for measuring the recognition performance.  

 The recognition rate (RR) is defined as: 

characterstestingofnumberTotal
charactersrecognizedcorrectlyofNumberRR =                …… (1.1) 

The reliability (RE) can be denoted as: 

characterstestingofnumberTotal
characterszedmisrecogniofNumbercharacterstestingofnumberTotalRE −=

                                                                                                                                           

                                                                                                                              …… (1.2) 
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Our work started with research on hybrid feature extraction. It is important to make the 

feature extraction algorithms insensitive to the character’s size, rotation, shifting, and to 

the variation of writing styles.   

 One research aspect was to design effective feature extraction methods. A novel Medial 

Axial Transformation (MAT) based feature extraction method was developed, which has 

produced an excellent recognition performance. We proposed a two dimensional real 

wavelet transformation and a two dimensional complex wavelet transformation for the 

hybrid feature extractions. In total, seven sets of features were proposed.   

Our next focus was to develop a verification model for similar character pairs. 

Theoretical research on multi-modal nonparametric discriminant analysis was proposed 

in order to reduce feature dimensionality, thereby enhancing the classifiers’ computation 

efficiency. 

In the last part of our research work, we proposed a cascade ensemble classifier 

recognition system for the recognition of handwritten numerals with a rejection strategy 

in order to obtain the highest recognition rate with a minimal error rate, or the best 

reliability performance, based on the following reasons:    

It is common sense that the misrecognition rate can be a sensitive issue in some 

applications such as bank check reading and mailing letter sorting. Recognition with a 

proper rejection option provides a means to reduce the error rate through a rejection 

mechanism, i.e., the rejection option may withhold a decision if the confidence value is 

not high enough and it may direct a rejected pattern to an exceptional handling for 

manual inspection. With a rejection option, the system reliability is increased.  
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As we know, it is difficult for a single classifier to get a very high reliability rate for 

handwritten digital recognition due to the variability of handwriting styles. There are a 

few possible solutions to help reduce the number of errors. One solution is to employ a 

verification module. Another solution is to use a combination of multiple classifiers. The 

different features extracted by different means, which are inputted to different classifiers 

for classification, have different merits for recognition because some of the features are 

complementary.  It is reasonable to combine several classifiers to produce the highest 

reliability and at the same time to seek the lowest misrecognition rate. 

 

1.3 Research Goals 

Research goals of this thesis are twofold: theory and application. The theoretical aspect is 

focused on the following: research on hybrid feature extraction, multi-modal 

nonparametric analysis for feature dimensionality reduction for the verification of 

handwritten numerals, and the cascade ensemble classifier recognition system with 

rejection strategy in order to pursue the highest reliability. The applications are based on 

the proposed theories, to implement the OCR system. 

1.3.1 Theory 

This thesis will mainly address the following issues: 

• Proposing hybrid feature extraction methods. 

• Researching a multi-modal nonparametric analysis method for the curse of 

dimensionality of the features. 
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• Analyzing the tradeoff of the error, rejection and recognition rates of the cascade 

ensemble classifier system. 

• Designing a novel ensemble classifier scheme, which consists of Artificial Neural 

Networks (ANNs) and Gating Networks (GNs). 

1.3.2 Applications 

We can apply the theoretical research to the following aspects: 

• To implement hybrid feature extraction methods (including 2-D real and complex 

wavelet features; Medial Axial Transformation-based gradient features, etc.) 

• To implement a series of pair-wise verifiers based on multi-modal nonparametric 

analysis for feature dimension reduction. 

•  To implement a cascade ensemble classifier system for the recognition of 

handwritten numerals with rejection strategies in order to pursue the highest 

recognition rate with a minimal error rate. 

 

1.4 Outline of the Thesis 

This thesis is organized as follows: 

In Chapter One, Motivation of handwritten numeral recognition is described. The focus 

of our work, the research goal and implementation are discussed.  

In Chapter Two, a comprehensive survey of feature extraction and selection, 

classification, recognition, and verification methods for handwritten numerals is given.   
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In Chapter Three, preliminary knowledge about the theory and the structure of the 

Artificial Neural Network (ANN) with back-propagation learning algorithms, used as a 

classifier in this thesis, is discussed. The basic theory and concept of wavelets are 

presented in order to give a theoretical background for wavelet-based feature extraction. 

In Chapter Four, seven sets of hybrid features are extracted by using different 

approaches. Based on the multi-class divergence analysis, a multi-class feature ranking 

and feature random selection scheme is proposed in order to produce three sets of new 

randomly selected features. A general recognizer is implemented and some handwritten 

numeral recognition results based on the extracted features are also given. 

In Chapter Five, research on multi-modal nonparametric analysis for feature compression 

and selection is conducted. The multi-modal nonparametric analysis for feature 

dimensionality reduction leads to the design of a verification model for better 

distinguishing the similar numeral pairs of the recognition system. 

In Chapter Six, theoretical analysis of the tradeoff of the error, rejection, and correct 

recognition rates in an ANN classifier, an ensemble classifier including an ensemble 

logical “and” scheme and an ensemble average scheme, and a cascade ensemble classifier 

system are investigated. The theoretical research proves that it is possible to design and 

implement a cascade ensemble recognition system for the recognition of handwritten 

digits with a very high recognition rate and a minimal error rate. 

In Chapter Seven, a series of cascade ensemble classifier schemes are proposed. One of 

the novel ensemble classifier schemes includes three ANNs and three gating networks 

with a rejection strategy in order to reduce the misrecognition rate while pursuing the 
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highest recognition rate. Comprehensive experiments are conducted using different 

strategies and the recognition results on the MNIST are given. 

In Chapter Eight, conclusions are drawn about the contributions of this thesis. The 

analysis of the proposed methods and suggestions for further research are presented.    
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Chapter Two 

Literature Review 

 
This chapter includes a handwritten digit recognition literature review. Topics to be 

reviewed are: handwritten recognition systems, handwritten verification methods, 

handwritten digit feature extraction, feature dimensionality reduction and selection, and 

recognition with rejection strategies for improving the recognition system’s reliability.   

 

2.1 Handwritten Digit Recognition System 

OCR has been researched for many years and OCR systems have been continuously 

improving as will be explained in this section: 

In Brown et al. [7], a recognition system for the unconstrained handprinted numerals was 

proposed, which used topological, geometrical and local measurements to identify the 

character or to reject the character as unrecognizable. The recognition system yielded a 

recognition rate of 97% with a substitution error rate of 0.3% and a rejection rate of 

2.7%.  

In Stringa [106], a pattern recognition system was applied to the unconstrained 

alphanumeric character recognition. The recognition system was designed to allow 

hierarchical re-description of the input images and the phrase-structure grammars were 
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developed. The experiments conducted on handwritten digits indicated that the 

recognition rates were comparable to the best OCR system at that time, but with a 

considerable reduction in computing time. 

In Suen et al. [108], four experts for the recognition of handwritten digits were proposed. 

In expert one, the skeleton of a character pattern was decomposed into branches. The 

pattern was then classified according to the features extracted from these branches. In 

expert two, a fast algorithm based on decision trees was used to process the more easily 

recognizable samples, and a relaxation process was applied to those samples that could 

not be uniquely classified in the first phase. In expert three, statistical data on the 

frequency of occurrence of features during training were stored in a database. This 

database was used to deduce the identification of an unknown sample. In expert four, 

structural features were extracted from the contours of the digits. A tree classifier was 

used for classification. The resulting multiple-expert system proved that the consensus of 

these methods tended to compensate for individual weakness, while preserving individual 

strengths. The high recognition rates were reported and compared favorably with the best 

performance in the field.  

Mitchell and Gillies [77] used the tools of mathematical morphology to extract cavity 

features as the starting input for their specialized digit recognizers. A classification 

system was implemented by a symbolic model matching process.  

Le Cun et al. [19] achieved excellent results with the convolutional neural networks, 

which were specifically designed to deal with the variability of two dimensional (2-D) 

shapes. For the recognition of handwritten numerals, the recognition rate with this 

method could be as high as 99.18% on the MNIST database. 
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Recently, many improvements have been reported, especially in pursuing a higher 

recognition rate. In Simard et al [105], authors expanded the training set of the MNIST 

dataset by adding a new form of distorted data, and the convolutional neural networks 

were better suited for classification purposes. The recognition rate was achieved at 

99.60%.  

Shi et al. [102] proposed a handwritten digit recognition system using the gradient and 

curvature of the gray character image in order to improve the accuracy of handwritten 

numeral recognition. The experiments were conducted on IPTP CDROM1, NIST SD3, 

and SD7 databases. The recognition rates could reach from 98.25% to 99.49%. 

Teow and Loe [110] proposed a handwritten digit recognition system based on a 

biological vision model. The features were empirically extracted by the model, which 

could linearly separate over a large training set (MNIST). The high recognition rate was 

reported, where the error rate was 0.59%.     

Decoste and Scholkopf [21] proposed a handwritten digit recognition system where the 

prior knowledge about invariance of a classification problem was incorporated into the 

training procedure. Support Vector Machines (SVMs) were used as classifiers. The 

system achieved a low error rate of 0.56% when using this procedure with the MNIST 

dataset. 

Recently, many handwritten digit recognition systems with very high recognition rates 

have been emerged. These recognition systems were conducted on the well known 

MNIST database.  Here are some examples: 

• 99.58% of SVCs on gradient features (Liu et al., 2002) [69], 

• 99.41% of LIRA_grayscale (Kussul and Baidyk, 2004) [61], 
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• 99.46% of Trainable Feature Extractor and Support Vector Machine (TFE-SVM) 

with affine transformations for increasing the training set (Lauer et al., 2005) [65], 

• 99.56% of Image Recognition Systems with Permutative Coding (Kussul et al., 

2005) [62]. 

• 99.63% of Support Vector Machine VSVMb (Dong et al. 2005) [22,23] 

A comprehensive survey on handwritten numeral recognition by using different feature 

extraction methods, and different classifiers on CENPARMI, CEDAR, MNIST databases 

has been reported in [70]. The classifiers included one k-nearest classifier, three neural 

classifiers, a learning vector quantization classifier, a discriminative learning quadratic 

discriminative function classifier and two support vector classifiers. On the MNIST test 

dataset, 80 recognition results were given by combining eight classifiers with ten feature 

vectors. The error recognition rates were between 1.50 and 0.61.    

 

2.2 Verification Methods for Handwritten Digits    

A verification model was proposed in the 1990’s in order to increase the OCR system’s 

reliability. For the verification of handwritten numerals, Zhou et al. [125] investigated 

some verification schemes. Verification-enhanced systems were proposed with extensive 

experiments conducted on both isolated and touching numerals. There were two layers of 

verification modules: class-specific verifiers and pair-wise verifiers. A class-specific 

verifier was designed to distinguish one class from other classes, e. g., (Is it a “1”?). A 

pair-wise verifier was used to verify the recognized characters into two categories, e. g., 

(Is it a “4” or “9”?). 
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Oliveira et al. [85] discussed two types of level verifications on handwritten numeral 

strings: high-level and low-level. The high-level verifier dealt with a subset of the classes 

in order to confirm or deny the hypotheses produced by the general-purpose recognizer. 

The low-level verifier dealt with meta-classes of the system (characters and parts of 

characters). The purpose of the low-level verifier was to determine whether a hypothesis 

generated by the general-purpose recognizer was valid or not.  

 Teredesai et al. [111] proposed Genetic programming (GP) to evolve secondary 

classifiers for disambiguating between pairs of handwritten digit images. A two-step 

classification strategy was presented in the paper. The first step of the classification used 

a full feature set. If the confidence was high, the recognition result would lead to an end 

of the recognition process. Otherwise, a secondary classifier was designed in the second 

step by a subset of the original feature set and the information available from the earlier 

classification step would help classify the input further. The combination of first- and 

second-stage classifiers was able to achieve a 99.0% acceptance rate and a 0.3% error 

rate. 

 

2.3 Feature Extraction 

The purpose of feature extraction is to get the most relevant and the least amount of data 

representation of the character images in order to minimize the within-class pattern 

variability while enhancing the between-class pattern variability. There are two 

categories of features: statistic features and structural features. 
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In the statistic feature domain, Hu [46] introduced the use of moment invariants as 

features for pattern recognition. Hu’s absolute orthogonal moment invariants (invariant to 

translation, scale and rotation) have been extensively used in the recognition systems.  

In Krzyzak et al. [55], features were firstly extracted from the contours of numerals: 15 

complex Fourier descriptors were extracted from the outer contours and simple 

topological features were extracted from the inner contours. These features were directly 

presented as the input of a three-layer ANN for recognition. 

In recent years, wavelet transform has been an emerging tool for feature extraction. In 

Chen, Bui and Krzyzak’s paper [13], a multiwavelet orthonormal shell expansion was 

used on the contour of the character to get several resolution levels and their averages. 

Finally, the shell coefficients were used as the features input into a feed-forward neural 

network to recognize handwritten numerals. 

Tao et al. [109] investigated the utility of several emerging techniques to extract features. 

The central projection transformation was applied to describe the shape of the characters; 

then the wavelet transformation was used to aid in the boundary identification, and the 

fractal features were employed to enhance image discrimination for the recognition of 

printed Chinese characters and English letters of varying fonts. 

In Lee’s paper [67], Kirsch masks were adopted for extracting four directional local 

feature sets and one global feature set. A three-layer cluster neural network with five 

independent subnetworks was developed for classifying similar numerals.  

In the structural feature extraction domain, in Suen et al. paper [108], the comprehensive 

structural features were systemically implemented, such as the combined branch features, 

giving information on the following: shape, length, angular change, degree of curvature, 
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vertical and horizontal general directions, nature of the starting and ending points (J 

points and E points), their coordinates, the distance and the primitive features such as line 

segments, (open) convex polygons, and loops, etc.      

Liu et al. [70] summarized state-of-the-art feature extraction techniques, which included 

the extraction of chaincode features, gradient features, profile structure features and 

peripheral direction contributivity. The recognition performance comparisons among 

different types of features were given in the paper. 

In Gader et al. [33], a linear correlation feature extractor for handwritten digit recognition 

was described. Two different evaluation measures: orthogonality and information, were 

used to guide the search for features. ANNs with Back Propagation (BP) algorithms were 

used as classifiers in the recognition experiments of handwritten digits. The classification 

rates compared favorably with results published in the literature. 

Weideman et al. [114] extracted 36 normalized moment features, 18 topological features, 

24 2-D FFT features, and 16 shadow features that were found by projecting the character 

onto the nearest bars in the horizontal, vertical, and diagonal directions. The length of the 

shadow on each bar was used as a feature. The comparisons of a neural network and a 

nearest-neighbor classifier for the recognition of numeric handprint characters were 

reported.  

Oh et al. [82] proposed two feature sets based on distance transformation. In the first 

feature set, the distance from each white pixel to the nearest black pixel in the character 

image without the thinning operation was considered as a distance transformation feature. 

The second feature was called Directional Distance Distribution (DDD), which contained 

rich information encoding both black/white and directional distance distributions. A new 
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method of map tiling was also introduced and applied to the DDD feature to improve its 

discriminative power. The experiments were conducted on three sets of characters 

(numerals, English letters, and Hangul initial sounds). The results confirmed the 

superiority of both the DDD feature and the map tiling.  

In Yang et al. [117], high-order B-splines were used to calculate the curvature of the 

contours of handwritten numerals. The concept of a distribution center was introduced so 

that a one-dimensional periodic signal could be normalized as a shift invariant. The 

curvature of the contour of a character became rotation invariant. ANNs and SVMs 

classifiers were employed to train the features. High verification rates on similar numeral 

pairs were reported. 

Oliveira et al. [87] proposed a specific concavity, contour-based feature sets for the 

recognition and verification of handwritten numeral strings. The OCR system could 

process either isolated digits or handwritten numeral strings.   

Gao and Ding [34] proposed two new feature extraction strategies: the modified multiple 

discriminant analysis and the difference principal component analysis. The proposed 

algorithms were useful in automatic feature extraction from different patterns. 

Experiments have shown that the two new methods provided more effective feature 

metrics for pattern discrimination in the recognition of Chinese character fonts and 

handwritten digits.  

Trier et al. [113] presented a comprehensive overview of feature extraction methods for 

off-line recognition of isolated characters. The feature extraction methods included: (1) 

template matching; (2) deformable templates; (3) unitary image transforms; (4) graph 

descriptions; (5) projection histograms; (6) contour profiles; (7) zoning; (8) geometric 
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moment invariants; (9) Zernike moments; (10) spline curve approximations; and (11) 

Fourier descriptors.  The mentioned methods could be applied to one or more of the 

following character forms: (1) gray-level character images; (2) binary character images; 

(3) character contours; and (4) character skeletons or character graphs. 

 

2.4 Feature Dimensionality Reduction and Selection  

There are two types of feature dimensionality reduction. One is called feature selection, 

which uses some criteria to select fewer features from the original feature set. The second 

type uses an optimal or sub-optimal transformation to conduct feature dimensionality 

reduction. The latter is an information congregation operation rather than the operation of 

deleting less useful features. 

Feature selection is an important step in OCR. In a large feature set (where, normally, the 

number of features is greater than 100), the correlation of features is complicated.  

Retaining informative features and eliminating redundant ones are a recurring research 

topic in pattern recognition. Generally speaking, feature extraction and feature 

dimensionality reduction serve two purposes: (1) to improve the training and testing 

efficiency, and (2) to improve the reliability of a recognition system. 

Divergence distance measurement is one feature selection criterion. Intuitively, if the 

features show significant differences from one class to another, the classifier can be 

designed more efficiently with a better performance [83]. Some well-known feature 

selection methods include:  Sequential Forward Selection/Sequential Backward Selection 

(SFS/SBS), Sequential Forward Floating Selection/Sequential Backward Floating 
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Selection (SFFS/SBFS) [91], and the Branch and Bound algorithm (BAB) [80], as well as 

its varieties of the improved algorithms [38, 103]. These algorithms have shown good 

feature selection performance in small- and medium-scale feature sets. The time 

complexities for both SFFS/SBFS and BAB are )2( nO , where n is the dimension of the 

feature set.  The BAB algorithm requires the criterion function to be monotonic [56].   

Genetic algorithms (GAs) offer a particularly attractive approach to feature selection 

since they can generally perform quite an effective search of a large, non-linear space 

[104]. In the handwritten character recognition area, some researchers [51, 86] have 

developed OCR-oriented criteria or fitness functions, which can alleviate the computation 

complexity for a given feature number m, (m≤n, n is the number of features initially 

extracted).   However, the main drawback of the GA method lies in the difficulty of 

exploring different possibilities of trade-off between having classification accuracy and 

having different subsets of selected features [86].  

Some feature selection is based on the unsupervised scheme using feature similarity. For 

example, Mitra et al. [76] proposed a method to measure similarity between features 

whereby redundancy therein is removed.  

Oh et al. [84] proposed a novel hybrid algorithm for feature selection. Local search 

operations were devised and embedded in hybrid GAs to fine-tune the search. The 

hybridization technique produced two desirable effects: a significant improvement in the 

final performance and an acquisition of subset-size control. 

 In Bressan et al.’s paper [4], a feature selection method was proposed based on the 

Independent Component Analysis (ICA) under the assumption of class-conditional 

independence. 
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Nunes et al. [81] presented an optimized Hill-Climbing algorithm to select a subset of 

features for handwritten character recognition. The search was conducted taking into 

account a random mutation strategy and the initial relevance of each feature in the 

recognition process. The experiments showed a reduction in the original number of 

features used in an Multiple Layer Perceptron (MLP)-based character recognizer from 

132 to 77 features (a reduction of 42%) without a significant loss in recognition rates. 

Another research direction of feature dimensionality reduction is based on information 

theory. The basic idea is to retain as much information as possible while conducting 

feature transformation. When feature extraction or dimensionality reduction is carried 

out, a criterion function should be given for minimizing the information loss and for 

increasing classification separability. If the mapping is linear, it means that the mapping 

function is well defined and our task is simply to find the coefficients of the linear 

function so as to maximize or minimize a given criterion.  Unfortunately, in many 

applications of pattern recognition, those important features, which are not simply linear 

functions of the original measurements, are highly nonlinear functions. Therefore, the 

goal is to find an appropriate nonlinear mapping function for a given dataset as follows: 

Karhunen-Loeve (K-L) transformation or Principal Component Analysis (PCA), taken as 

a whole, is an optimal signal representation method in the sense that it provides the 

smallest mean square error for the compression of a given set of data. Fukunaga and 

Koontz [30] successfully applied K-L expansion to feature selection and ordering.  

Fukunaga-Koontz’s method works well in problems where the covariance differences are 

dominant and where there is little or no mean difference between two pattern classes. In 
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order to find the best vectors for discriminating between two classes, it is necessary to 

select an optimal criterion. 

Foley and Sammon [26] used the Fisher ratio shown in equation (2.1) to get discriminant 

vectors and the corresponding discriminant values iteratively. The discriminant vectors 

can be ordered according to their corresponding discriminant values. 

Add
d

t

t

dR
2)()( Δ=

                                                                                           ……(2.1) 

where 

d: n-dimensional column vector on which the data are projected; 

Δ: the difference vector in the estimated means of two classes; 

Wi:  within-class scatter for class i; 

A=cW1+(1-c)W2  and  0≤c≤i. 

In practical applications, Foley and Sammon’s method fails to find the correct feature 

vector if there is little or no difference in the means between two classes.  

Feature extraction using nonparametric discriminant analysis is a useful and efficient way 

of using discriminant analysis in statistics. Within-class, between-class, and mixture 

scatter matrices are used to formulate the criteria of class separability.  We review the 

definitions of the above-mentioned scatter matrices below.  

A within-class scatter matrix ( wS ) shows the scatter of data around their respective class 

expected vectors, and is expressed by: 
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A between–class scatter matrix ( bS ) is the scatter of the expected vectors around the 

mixture mean as follows: 
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where M0 represents the expected vector of the mixture distribution and is given by  
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The mixture scatter matrix ( mS ) is the covariance matrix of all the data regardless of their 

class assignments, and is defined by the following: 
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T
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If we set the optimal discriminating power on a classifier, we can use a criterion J, which 

has the following form: 

1
1

2 StrSJ −=                                                                                              …… (2.6)                          

where tr(.) is the trace operation; S1 represents the between-class matrix Sb, while S2 

represents the within-class scatter matrix Sw.  

Fukuanaga and Mantock [31] gave a mono-modal based nonparametric discriminant 

analysis method for feature extraction of a two-class classification problem. The authors 

processed all training samples to deduce the optimal criterion J. In addition, authors 

applied the de-emphasing method [32] to those data that were far from the classification 

boundary, in order to preserve the classification structure. In order to calculate a 

nonparametic Sb of the two-class classification problem, for each training sample, 

Fukuanaga and Mantock’s algorithm needed to calculate the mean of   K-Nearest 

Neighbor (K-NN) data in the other class, then form a between-class scatter matrix. The 

computation complexity for Sb is )log( 2 NNO .  In that method, the decision boundary 

information is not taken into consideration in designing the feature extraction algorithm. 
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Lee and Langdgrebe [66] introduced the concepts of discriminantly redundant features 

and discriminantly informative features for classification. If a feature vector was parallel 

to the decision boundary, then the feature vector was considered to be discriminantly 

redundant. These features did not make any contribution to recognition performance. The 

effective decision boundary feature matrix was constructed by finding some training 

sample pairs in two classes near the decision boundary, by forming the unit normal vector 

to the decision boundary, and by calculating an estimate of the effective decision 

boundary feature matrix. However, the training sample pairs might have been selected in 

such a way that they could reflect all the distributions of the two classes along the 

decision boundary, especially for multi-modal distribution.      

Hastie et al. [39] proposed that in many situations, a single prototype was not sufficient to 

represent inhomogeneous classes, and that mixture models were more appropriate. The 

authors used the mixture discriminant analysis (MDA) method to model each class by 

using a mixture of two or more Gaussians with different centroids. A weighted optimal 

scoring scheme was presented in order to produce a blurred response matrix, and then 

both of the flexible discriminant analysis and the penalized discriminant analysis adapted 

naturally to the MDA. 

 In reference [40], Hastie and Tibshirani fitted Gaussian mixtures to each class to 

facilitate effective classification in non-normal settings, especially when the classes were 

clustered subclasses. A subclass shrinkage method was introduced in order to deduce the 

between-subclass variability relative to the between-class variability. Furthermore, the 

authors [41] proposed a locally adaptive form of nearest neighbor classification to 

suppress feature dimensionality. An iterative scheme was applied to estimate an effective 
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metric for computing neighborhoods, and then to shrink the neighborhoods in directions 

orthogonal to these local decision boundaries, and to elongate them parallel to the 

boundaries.  

Torkkola [112] used the nonparametric estimation of mutual information between class 

labels and transformed features. A quadratic divergence measure was employed to make 

an effective non-parametric implementation.  

In the paper by Fukumizu et al. [29], the authors treated the problem of dimensionality 

reduction as that of finding a low-dimensional effective subspace, and they derived a 

contrast function to estimate the effective subspace for dimensionality reduction.  

In reference [5], Bressan and Vitria explored the connection between Nonparametric 

Discriminant Analysis (NDA) and the Nearest Neighbors (NN) classifier and proposed a 

modified Mono-modal Nonparametric Discriminant Analysis method (MNDA) for 

feature dimensionality reduction. The between-class scatter matrix Sb was calculated in 

the same way as Fukunaga’s method. However, for computing the within-class scatter 

matrix Sw, the authors adapted a modified method as follows:  Firstly, find the mean 

( )( iXMean ) of the k-NN for each training sample Xi (i=1,2,…,D; where D is the number 

of training samples); then, calculate the difference between the training sample and its k-

NN mean as follows: )( iii XMeanX −=Δ ; finally, congregate the covariance matrix of 

all the training samples: T
ii

D

i
DwS ΔΔ= ∑

= 1

1  to form a new within-class scatter 

matrix. The computation complexity of Sb was the same as that of NDA. This method 

also needed to calculate an additional k-NN from the same class for each training sample 
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in order to compute Sw. So the overall computational complexity of this method was 

greater than that of the NDA method. 

 Feature selection or feature dimensionality reduction based on nonparametric 

discriminant analysis is a promising method. In Chapter 5, we will further develop a new 

algorithm for feature dimensionality reduction, where the nonparametric discriminant 

analysis and decision boundary information are combined.   

 

2.5 Classifier  

Designing a classifier is not a research topic in this thesis; however, classification is a 

vital step in the OCR system. A brief survey on classifiers is investigated below. 

Nearest Neighbor classifier (NN) was well described in a book written by Duda et al. 

[25]. It uses a predefined distance to measure the similarity between a feature vector of 

the testing sample and a feature vector set for the class. The distance function can be 

Euclidean or Hamming distance. The problem with this method is that it has a high 

computation cost and is inflexible. 

The polynomial discriminant classifier [100] assigns a pattern to a class with the 

maximum discriminant value, which is computed by a polynomial in computing a feature 

vector. The class models are implicitly represented by the coefficients in the polynomial. 

The Bayesian classifier assigns a pattern to a class with the maximum a posterior 

probability. The class prototypes are used in a training stage to estimate the class-

conditional probability density function for a feature vector [25, 79]. 



 24

Tree classifiers are used to reduce the complexity in prototype matching. There are many 

well-known tree classifiers, such as CART [3] and C4.5 [92]. Ho [45] used the C.5 

decision tree and reported good results on recognition problems. 

Hidden Markov Model (HMM) [93] consists of a set of states and the transition 

probabilities between consecutive states. When using HMM for a classification problem, 

an individual HMM is constructed for each pattern class. For each observation sequence, 

i.e., for each sequence of feature vectors, the likelihood for the sequence is calculated. 

The class in which the HMM achieved the highest probability, is considered to be the 

class that produced the actual sequence of observations. For example, Gunter and Bunke 

[37] used HMM for handwritten text recognition. Britto et al. [6] proposed the 

recognition of handwritten numeral strings using a two-stage HMM-based method, and 

Park et al. [88] used a 2-D HMM for character recognition.  

The utilization of the Support Vector Machine (SVM) classifier has gained immense 

popularity in the past years [8, 54, 89]. SVM is a discriminative classifier based on 

Vapnik’s structural risk minimization principle. It can be implemented on flexible 

decision boundaries in high dimensional feature spaces. Generally, an SVM solves a 

binary (two-class) classification problem, and multi-class classification is accomplished 

by combining multiple binary SVMs.  Good results on handwritten numeral recognition 

by using SVMs can be found in Dong, et al.’s paper [23]. 

Artificial Neural Networks (ANN), due to its useful properties such as: highly parallel 

mechanism, excellent fault tolerance, adaptation, and self-learning, has become 

increasingly developed and successfully used in character recognition [2, 9, 14, 15, 35, 

118]. The key power provided by such networks is that they admit fairly simple 



 25

algorithms where the form of nonlinearity that can be learned from the training data. The 

models are thus extremely powerful, have nice theoretical properties, and apply well to a 

vast array of real-world applications. 

One of the most popular methods for training such multilayer networks is based on 

gradient descent method, namely, the backpropagation algorithm or generalized delta 

rule. The method is powerful, useful, and relatively easy to understand and implement. 

As ANN is mainly used as classifier in my thesis, a three-layer ANN with BP algorithms 

will be discussed in detail later in Chapter 3.   

 

2.6 Combination of Classifiers 

The classifier Combination, or the ensemble classifier has attracted theoretical and 

practical attention. There are two purposes, one is to increase recognition reliability; 

another is to increase recognition accuracy [53, 94].  

Xu et al. [116] proposed four combining classifier approaches according to the levels of 

information available from the various classifiers. The experimental results showed that 

the performance of individual classifiers could be improved significantly. 

Huang and Suen [47, 48] proposed the Behavior-Knowledge Space method in order to 

combine multiple classifiers for providing abstract level information for the recognition 

of handwritten numerals.  

Ho [44] proposed the theory of a decision combination scheme based on the ranking of 

classes by each classifier. The ranks were implemented by different types of classifiers. 
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Woods et al. [115] presented a method using local accuracy estimates. The combination 

method used the estimates of each individual classifier’s local accuracy in small regions 

of a feature space. Synthesized data sets were used for the experiments.  

Cho and Kim [16] conducted experiments with network fusion using a fuzzy integral. 

The fuzzy integral was a nonlinear function that was defined with respect to a fuzzy 

measure.  

Lam and Suen [64] studied the performance of combination methods that were variations 

of the majority vote. A Bayesian formulation and a weighted majority vote (with weights 

obtained through a genetic algorithm) were implemented, and the combined 

performances of seven classifiers on a large set of handwritten numerals were analyzed. 

In recent years, some new theories and solutions on combinations of classifiers have been 

proposed in the boarder areas, but were not limited to the OCR field. 

Kuncheva and  Jain [57] proposed two ways to use a genetic algorithm (GA) to design a 

multiple-classifier system. The first GA version selected disjoint feature subsets to be 

used by individual classifiers, whereas the second version selected overlapping feature 

subsets and the types of the individual classifiers. GA design could be made less prone to 

overtraining by including penalty terms in the fitness function, which accounts for the 

number of features used.   

In reference [58], Kuncheva investigated six fusion methods of classifiers by estimating 

the posterior probability for each class. It was assumed that the estimates were 

independent and identically distributed (normal or uniform) and that the formulas were 

given for the classification error for each of the following fusion methods: average, 

minimum, maximum, median, majority vote and oracle. 
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In references [59, 60], Kuncheva et al. proposed a combination of classifier selection and 

fusion methods by using statistical inference to switch between the two. Selection was 

applied in those regions of the feature space where one classifier strongly dominated the 

others from the pool and fusion was applied in the remaining regions. The Decision 

Templates (DT) method was adopted for the classifier part. The papers included a 

discussion on when to combine classifiers and on how classifier selection can be misled. 

Alkoot and Kittle [1] also gave an experimental evaluation of expert fusion strategies and 

validated the classifiers experimentally. The experimental results on different experts 

were given. 

Liu et al. [71] investigated a number of confidence transformation methods for the 

measurement-level combination of classifiers. Each confidence transformation method 

was a combination of a scaling function and an activation function. The confidence 

transformation methods were used in handwritten digit recognition. The results showed 

that confidence transformation was efficient enough to improve the combination 

performance. 

The research on multi-layer ensemble classifiers is a new and challenging topic, which 

will be discussed in Chapters 6 and 7. 

 

2.7 Classification with Rejection Strategy 

There are a few hierarchical or multi-classifier strategy recognition systems published in 

the literature. For example, some researchers pursue the higher recognition accuracy, or 
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less computation time; others introduce a hierarchical rejection policy, as summarized 

below: 

Giusti et al. [36] proposed a two-stage system based on first (global) classifier with 

rejection followed by a (local) nearest-neighbor classifier. In that system, the patterns 

rejected by the first classifier were classified by the second classifier (the nearest-

neighbor classifier), which looked for the top-h classes. The experiments were conducted 

on NIST-3 handwritten digits. Recognition rates ranged from 93.80% to 94.09% with 

different networks; however, the tradeoff of the error rate and the rejection rate 

(reliability) was not given explicitly. Rodriguez et al. [98] dealt with handwritten digit 

recognition using a three-level classifier with rejection techniques. K-NN and K-NCN 

were used as classifiers. The rejection strategy at each level was different. The 

recognition rates were reported from 97.34% to 99.54% conducted on NIST database. As 

an example with rejection option, the reliability of 99.99%, recognition rate of 86.68%, 

and rejection rate of 13.23% was given. Mayraz and Hinton [75] proposed the product of 

experts learning procedure for the recognition of handwritten digits. The experiments 

were conducted on the MNIST database and the recognition rate was over 98%. No 

rejection rate (reliability) was given. Cecotti and Belaid [12] proposed a rejection strategy 

for the convolutional neural network models. A self-organizing map was used to change 

the links between the neural network layers. Instead of learning all the possible 

deformation of the patterns, ambiguous patterns were rejected and the network’s topology 

was modified. The experiments were conducted on the MNIST database. As an example, 

the recognition rate of 92.12% and the corresponding rejection rate of 7.63% were 

reported.  Nunes et al. [81] introduced a cascade classifier based on feature subsets of 
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different sizes. The proposed method demonstrated a significant reduction in terms of 

computational complexity. Rahman et al. [95] proposed a multiple expert framework (3 

classifiers, 2 parallel and 1 serial) and Clifford algebra to form ANN’s weights. The 

experiments were conducted on NIST handwritten digits and the recognition rate of 

90.34% was reported. Schettini et al. [99] presented a hierarchical classification scheme 

for classifying images into photographs, graphics, texts and compound documents. The 

classifier used was the CART tree. Heisele et al. [43] used a serial classifier structure to 

recognize foreground images and to reject background images for face detection. SVMs 

were used as classifiers.  In reference [27], Frelicot and Mascarilla dealt with a 

combination of pattern classifiers with two rejection options. A decision rule was 

proposed for classifying or rejecting patterns either for distance or ambiguity. The 

experimental results were conducted on the Waveforms, Satimages and Iris of the UCI 

Repository of Machine Learning Database. In reference [126], Zimmermann et al. 

investigated three different rejection strategies for offline handwritten sentence 

recognition. The rejection strategies were implemented as a postprocessing step of a text 

recognition system based on Hidden Markov Model. 
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Chapter Three 

Preliminaries 

 

In this chapter, we will review two preliminaries: Artificial Neural Network (ANN) and 

Wavelet Transform (WT). ANN has been widely used in pattern recognition as a 

classifier due to its useful properties such as: highly parallel mechanism, excellent fault 

tolerance, adaptation, and self-learning. One of the most successful applications is its 

application to OCR. WT has been a hot topic for the past twenty years due to its merits, 

such as localization, multiresolution analysis and a fast algorithm, which are very useful 

for fine (detail) feature extraction in the pattern recognition field. A detail analysis will be 

presented in the following section.   

 

3.1 Three-Layer ANN Classifier   

An ANN is an interconnected group of artificial neurons. ANN refers to electrical, 

mechanical or computational simulations or models of biological neural networks. One of 

the most popular methods for training a multilayer network is based on the gradient 

descent principle using the back-propagation algorithm or generalized delta rule. The 

principle is a natural extension of the Least Mean Squares (LMS) algorithm because it is 

powerful, useful, and relatively easy to understand and implement.   

An ANN classifier consists of input units, hidden units, and output units. In terms of 

classifying ten numerals, we will have ten output units, one for each of the ten numerals, 
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and the signal from each output unit is the discriminant function )(xgk . The discriminant 

function can be expressed as: 
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                                         …… (3.1) 

where ix is a feature component; jiw is a weight between the input layer and the hidden 

layer; kjw  is a weight between the hidden layer and the output layer; i=1,…,d, and d is the 

number of nodes in the input node; j=1,…, r, and r is the number of nodes in the hidden 

layer; k=0,1,2,…, 9, which represents the number of nodes in the outputs layer. For 

example, 10 nodes of outputs represent ten digits. 

Thus, the discriminant function can be implemented by a three-layer neural network. The 

configuration of the three-layer neural network for the recognition of ten handwritten 

numerals is drawn in Fig. 3.1. A more intuitive proof of the universal expressive power of 

three-layer nets is inspired by Fourier’s theorem. The theorem states that any continuous 

function )(xgk can be approximated arbitrarily by a possible infinite sum of the harmonic 

function, given a sufficient number of hidden units Hn , proper nonlinearities, and 

weights [25].  

We now turn to the crucial problem of setting the weights based on training patterns and 

the desired output. 

 



 32

              

          Fig. 3.1 Configuration of three-layer neural networks 

 

3.2 Backpropagation Algorithm 

Backpropagation is one of the simplest and most general methods for the supervised 

training of multilayer neural networks. The training error on a pattern is considered to be 

the sum of the output units from the squared differences between the desired output tk 

given by a teacher and the ANN’ output zk: 
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                                                                       …… (3.2) 

where tp and z are the target and the network output vectors of length c, and w represents 

the weights in the network. 

The backpropagation learning rule is based on gradient descent. The weights are 

initialized with random values, and then they are changed in a direction that leads to a 

reduction in the squared error in equation (3.2): 
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where η is a learning rate. The iterative algorithm updates the weights as follows: 

)()()1( mwmwmw Δ+=+                                                                                   ……  (3.4) 

where m indexes the particular pattern presentation. 

For a three-layer neural network, consider first the hidden to output weights: kjw , if we do 

differentiation: 
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Apply equation (3.5) to equation (3.2), then kδ can be simply represented as: 
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Each output similarly computes its net activation based on the hidden unit signal yj as 
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where y0 =1,  and the following derivative exists: 
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 So the weight update or learning rule for the hidden-to-output weights is: 

jkkkjkkj ynetfztpyw )()( ′−==Δ ηηδ                                                              .….. (3.9) 

In analogy with equation (3.6), the sensitivity of the hidden unit is defined as [25]: 
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The learning rule for the input-to-hidden weight is:  
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A simple threshold or sign function can be defined as: 
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or 

)1(1)( netenetf −+=                                                                          …… (3.13)    

 

3.3 Practical Considerations for Improving ANN Training Procedure 

We use equations (3.4, 3.9, 3.11) to update the weights in the three-layer ANNs in order 

to minimize the squared errors in equation (3.2).Practical considerations will be discussed 

in this section. 

Scaling Input: In order to avoid the variations of feature values, the input pattern should 

be shifted so that the feature vector’s values are scaled into domain [0,N]. 

Firstly, original features are normalized as follows: 
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where jix , is the jth feature of the ith training samples(j=1,…n; i=1,…,l). '
, jix is the 

normalized feature,  l is the total number of training samples and n is the number of 

features.  

Target Values: The target value (the desired output) of the output category is chosen as 

+1, while others are set equal to 0.0. 
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Training with Outer Layer: In order to increase the neural network’s discriminant 

ability, some outer layer images are produced and put into the training set. For 

handwritten numeral recognition and verification, the outer layer images may consist of 

the part of the characters, touching pairs of the characters, etc. 

Number of Nodes in the ANN: According to a convenient rule of thumb, the total 

number of weights in the net is roughly chosen as n/10~n/4. Here n is the number of 

training samples.   

Initializing Weights: Random data are generated for all weights in the range of -1.0< all 

weights <+1.0. 

Learning Rates: In general, the learning rate is small enough to ensure convergence. A 

learning rate of (0.1-0.4) is often adequate as a first choice. 

Training Different Patterns: We used the following strategies to train the classifiers: 

our training procedure concentrates on the “difficult” patterns. Firstly, an ANN classifier 

is trained on all training samples, then the same set of training samples are fed into the 

ANN for testing. Those “difficult” patterns, which are not correctly recognized, are 

copied several times and randomly put into the training set for training again. As more 

“difficult” patterns are in the training set, the ANN can adaptively learn how to correctly 

recognize those “difficult” patterns without losing its generality. 

Training Imbalanced Data: In Section 5.4, when we design absolute verifiers, for 

example, verifying numeral 4 (one class) from other nine numerals (another class), even 

the number of the training samples in each numeral category is approximately equal, the 

training data can be highly imbalanced for training a two-class classifier. ANN learning 

from imbalanced training data can result in ignoring the minority class. The back 
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propagation algorithm can be biased toward the majority class and the convergence of 

ANN can be very low. In order to overcome above mentioned problems, we used a prior 

duplication strategy to boost up the minority training data. The training samples in the 

minority class are copied several times and randomly put into the training set to keep the 

training data balance.  

  

3.4 What Is a Wavelet?  

The simple answer is a “short” wave. For creating a wavelet, two conditions have to be 

satisfied: First, the wavelet must be oscillatory (wave). Second, its amplitudes must be 

nonzero only during a short interval. Another definition of a wavelet transformation is 

that it can be considered as a mathematical tool for waveform representations and 

segmentations, time-frequency analysis, and fast algorithms for easy implementation 

[18].  

There are two famous signal analysis methods: Fourier analysis and wavelet analysis. 

Fourier analysis is a well-known technique of spectral analysis, which uses trigonometric 

functions. Any finite power signal f(x) can be represented as a series of components in the 

frequency domain. Fourier analysis has been a traditional and efficient tool in many fields 

of science and engineering.  

However, Fourier analysis has its own deficiencies: 

• Fourier analysis cannot show the signals locally in the time domain. 

• Fourier expansion can approximate the stationary signals well, but cannot do so 

for the non-stationary signals.   
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This makes Fourier transform a less than optimal representation for analyzing signals, 

images and patterns which contain transient or localized components.  

Normally, in pattern recognition analysis, many important features are highly localized in 

spatial positions.  

In order to clearly explain the wavelet, a typical wavelet function (Haar wavelet) is 

shown in Fig. 3.2. 

Haar wavelet is the simplest wavelet. There is a relationship between the scaling function 

and wavelet function. 

 

 

   (a)  Haar scaling function waveform     (b)  Haar wavelet function waveform 

   

   (c) Haar translation waveform              (d) Haar dilation waveform 

                        Fig. 3.2 Haar wavelet function  
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If we find a function )( xψ , which has the dilated and translated formula:  

Zkjkxj ∈− ,|)2(ψ   
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, ψψ                                                              …… (3.15)                          

This formula may constitute an orthogonal basis of the finite energy signal space )(2 RL :  

Thus, in the wavelet domain, any finite energy signal f(x) can be represented by: 
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For example, in order to compare the difference between Fourier transform and wavelet 

transform, two original signals )(1 xf and )(2 xf  are shown in Fig. 3.3 (a) and (b). The 

Fourier Transform results of the two waves are shown in Fig. 3.3 (c) and (d), 

respectively. 

We can observe that )(2 xf possesses a transient component with a very short interval. Its 

corresponding Fourier expansion contains many terms which produce a long vibration 

with a long duration.  

As a comparison to Fourier transform, the two original signals )(1 xf and )(2 xf  are drawn 

in Fig. 3.4 (a-b) again; the Haar wavelet transform results of the two waves are shown in 

Figs. 3.4 (c-d). 
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               (a) Original signal )(1 xf                           (b) Original signal )(2 xf   
               (c) Fourier coefficients of )(1 xf              (d) Fourier coefficients of )(2 xf  

Fig. 3.3 Two original signals and their Fourier coefficients 

 

 

               (a) Original signal )(1 xf                           (b) Original signal )(2 xf   
               (c) Haar coefficients of )(1 xf                  (d) Haar coefficients of )(2 xf  
              Fig. 3.4 Two original signals and their wavelet coefficients 

Note: x-axis represents the x value of )(1 xf  or )(2 xf ; y axis represents the amplitude for 

)(1 xf  or )(2 xf in different functions.  
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The above coefficients can successfully localize the signals. For signal )(1 xf in Fig. 3.4 

(a), nearly all Haar coefficients are close to zero (shown in Fig. 3.4 (c)), which implies 

that no high frequency is included in the original signal.  

By contrast, two peaks of the vibration in Fig. 3.4 (d) correspond to the two positions of 

the transient components in signal )(2 xf locally (shown in Fig. 3.4 (b)).  

Each coefficient in the wavelet domain is determined by the local action of the signal.  

Compared to Fig.3.3 of Fourier approximation, Haar wavelet has a better approximation 

for transient signals. However, as Haar wavelet has a saw-tooth waveform, it is not an 

optimal wavelet kernel. In recent years, many new wavelets have been proposed. Some 

examples include: Daubechies wavelet, Shannon wavelet, Meyer wavelet, Coiflet 

wavelet, Symmlet wavelet, etc. [18]. 

Generally speaking, compared to Fourier transform, wavelet transform has the following 

features: 

1) Better coefficients to approximate 

2) Orthogonality (scaling functions (vj) is orthogonal to wavelet function (wj)) 

3) Symmetry (to deal with boundaries) 

4) Short compact support: support-FIR filter 

The wavelet transform also has some advantages over Fourier transform: 

• A complicated signal f(x) can be constructed by the linear combination of wavelets, 

which are produced by the dilations and translations of the basic function. 

• The expansion coefficients of a signal using the basic wavelet function can reflect the 

locations of the transient in the time domain. 
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• The new basic function ψ(x) and its families can fit transient signal f(x) much better 

than the Fourier kernel. In other words, they can minimize the error between the 

approximation of f(x) and signal f(x) itself.   

In the next section, we will discuss multiresolution analysis. 

 

3.5 Multiresolution Analysis 

Fast Fourier Transform (FFT) is a revolutionary achievement in Fourier transform for 

signal processing. In the same way, Multiresolution Analysis (MRA) is also a great 

breakthrough in wavelet analysis in terms of algorithms and calculations. MRA has now 

become a very important tool in wavelet analysis and has been used in signal processing, 

pattern recognition, and other related fields. 

 A function f(x) is projected at each step j on the subset Vj :( ...... 2101 ⊂⊂⊂⊂⊂ − VVVV ). 

The scalar project cj,k is defined by the dot product of   f(x) with the scaling function 

)(xφ , which is dilated and translated as follows: 
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where the difference between 1+jc and jc  is contained in the detail component belonging 

to the space Wj , which is orthogonal to Vj: 
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Suppose ψ(x) is the wavelet function. The wavelet coefficients are obtained by: 
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Some relationships exist between )(xφ  and ψ(x) as follows: 
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where h(n) and g(n) represent low-pass and high-pass filters; n is the number of the 

filtering coefficients; the value of n depends on which wavelets are chosen. The filtering 

coefficients can be obtained from wavelet books [18, 20, 72, 73, 90]. 

In other words, the low frequency components and the high frequency components can be 

obtained directly by computation from njc ,  using Equation (3.21): 
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The reconstruction algorithm is shown in Equation (3.22): 
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n
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A decomposition diagram of one-dimensional signal is given in Fig. 3.5. This diagram 

shows a scheme of decomposing a signal jc into low frequency component 1−jc  and high 

frequency component 1−jw in the next layer, and so on. 
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Fig. 3.5 One dimensional signal decomposition 

 

For the filter coefficients, Daubechies D4 wavelet coefficients are listed below [18]: 
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Daubechies D4 wavelet will be used in our proposed feature extraction method in the 

next chapter. 
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3.6 Two Dimensional Wavelet Structure 

In the similar way to 1-D signal analysis, a 2-D image can be decomposed into four 

components: low-pass rows with low-pass columns (LL); high-pass rows with low-pass 

columns (HL); low-pass rows with high-pass columns (LH); and high-pass rows with 

high-pass columns (HH). Mathematically, we can express the recursive algorithm as 

follows:   
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where {hk}, {gk} are filter decomposition coefficients  relating to scale function φ(x)  and  

wavelet function ψ(x),  which result in various wavelet transformations  such as 

Daubechies, Coiflet, etc.  A wavelet decomposition scheme of a 2D image is shown in 

Fig. 3.6.   

In Fig. 3.6, a 2-D image signal can be decomposed into the next layer by convoluting kh  

or kg , and down-sampling (2:1) on the rows, respectively,  then convoluting  kh  and kg  

and down-sampling (2:1) on the columns.    
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                       Fig. 3.6  2D image wavelet decomposition scheme 

 

3.7 Fast Algorithm of Wavelet Transform 

Wavelet transform can be implemented by designing a pair of Finite Impulse Response 

(FIR) filters, then by down-sampling (2:1). This decomposition is repeated as a pyramid 

structure. The decomposed signal can be reconstructed by using the inverse pyramid 

structure [73]. It is well known that for FFT (Fast Fourier Transform), the computation 

complicity is )log( 2 nnO ; however, a fast wavelet transform takes )(nO  operations. 

Wavelet transform is a versatile tool with a very rich mathematical content and many 

applications.   

Localization and multiresolution analysis are two main properties of wavelet transform, 

which can be used to extract local and detail features in pattern recognition. The fast 

algorithm of wavelet transform makes its real-time applications possible. However, 
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wavelet transform has a 2:1 down-sampling operation, which results in its main 

drawback: it is sensitive to the shift of the signal. In recent years, researchers proposed a 

complex wavelet transform to overcome its deficiency. We will discuss complex wavelet 

in the next section and apply the complex wavelet transform to handwritten numeral 

feature extraction in the next chapter.     

 

3.8 Complex Wavelet Transform 

According to the wavelet theory, a conventional two-dimensional wavelet discrete 

transform (2D-DWT) can be regarded as equivalent to filter the input image with a bank 

of filters, whose impulse responses are all approximately given by scaled versions of a 

mother wavelet.  The output of each level consists of four sub-images: LL, LH, HL, HH 

with 2:1 down-sampling. If the wavelet filters are real and we use Mallat’s dyadic 

wavelet decomposition tree [73], which has a fast algorithm, the coefficients of 

decomposition will suffer from the lack of shift invariance and poor directional 

selectivity (only two direction decompositions). 

Two dimensional complex wavelet transform (2D-CWT) does not only keep wavelet 

transform’s properties of multi-resolution decomposition analysis and perfect 

reconstruction, etc.,  but it also adds its new merits: its magnitudes being insensitive to 

the small image shifts and multiple directional selectivity, which recently has been used 

successfully in signal and image processing. 2D-CWT can be implemented using a dual-

tree structure [52].   
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In two-dimensional complex wavelet transform (2D-CWT), we can set the basic 

functions to closely approximate complex Gabor-like functions, which exhibit strong 

characteristics of spatial locality and orientation selection, and are optimally localized in 

the space and frequency domains. Therefore, 2D-CWT functions have the following 

form: 

)(),(),( ywxwj yxeyxayxh +=                                                                    …… (3.24) 

where ),( yxa is a slowly varying Gaussian-like real window function centered at (0,0), 

and ),( yx ww  is the center frequency of the corresponding subband. So the complex 

coefficients of the ith subband of the lth level can be written as: 

l
i

l
i

l
i jvuc +=

                                                                                   ……  (3.25) 

The magnitude of each component of each subband is calculated as: 

22 )()( l
i

l
i

l
i vuC +=

                                                                                     …… (3.26) 

Since ),( yxa is a slowly varying function, the magnitude is insensitive to small image 

shift. 

The directional properties of the 2D-CWT arise from the fact that h(x,y) has a constant 

phase along the lines such that wxx+wyy  is constant. Complex filters in two dimensions 

provide true directional selectivity. There are six subband images of complex coefficients 

at each level, which are strongly oriented at angles of ±15°, ±45°, and ±75°.  These two 

properties are useful for pattern recognition. 

2D-CWT can be implemented using a dual-tree structure. For each tree, its structure is 

similar to 2D-DWT, which has two decomposition operations at each level, namely row 
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decomposition and column decomposition. However, the different filters of 2D-CWT are 

applied for perfect reconstruction and the outputs of subband images are congregated into 

complex wavelet coefficients. Interested readers can refer to reference [52] for further 

details.  
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Chapter Four 

Feature Extraction and Feature Selection Based on 

Multi-Class Divergence Analysis 

 

4.1 Feature Extraction 

Feature Extraction is a vital step in pattern recognition. In this chapter, seven sets of 

features are extracted. We use MNIST handwritten digit database, which includes 60,000 

training samples and 10,000 testing samples. All the digit images in the MNIST database 

are grayscale images with 28x28 sizes. In the preprocessing, each 28x28 grayscale digit 

image is binarized and normalized to a size of 32x32. These feature sets and the methods 

of extracting them are summarized below: 

4.1.1 Feature Set I: Directional-Based Wavelet Features   

We use Kirsch nonlinear edge enhancement algorithm to extract statistical features from 

the characters and apply wavelet transform on these statistical features to form original 

features.  

The directional-based feature extraction is implemented as follows: firstly, the Kirsch 

nonlinear edge enhancement algorithm is applied to an NxN character image to extract 

horizontal, vertical, right-diagonal and left-diagonal directional features and global 

features; then 2-D wavelet transform is used to filter out the high frequency components 

of each directional feature image and character image, respectively, and to convert the 

feature matrix into a 4x4 matrix.  
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Suppose that we define the eight neighbors of pixel (i,j) as follows:  

                                              A0   A1   A2      

                                               A7 (i,j)  A3  

                                               A6   A5   A4 

             Fig. 4.1   Definition of eight neighbors of pixel (i,j) 

Kirsch defined a nonlinear edge enhancement algorithm as follows: 

|}35[|max,1{max),( 7
0 kkk TSjiG −= =                                                     …… (4.1) 

where 
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                                                ……  (4.2) 

In order to extract four directional features from horizontal (H), Vertical (V), Right-

diagonal (R) and Left-diagonal (L) directions, we can use the following templates: 
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                                          ……. (4.3) 

Apply Daubechies-4 wavelets to four directional feature matrices and the character 

image, and only keep 4x4 low frequency components of each as features. The schematic 

diagram of the directional-based wavelet feature extraction is shown in Fig. 4.2. In total, 

16x5=80 features can be extracted from each character. 
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     Fig. 4.2 Schematic diagram of gradient based wavelet feature extraction  

 

4.1.2 Feature Set II: MAT based Gradient Features 

As we know, a grayscale image has richer information than a binary image for 

discrimination. A grayscale image can be created by two methods: it can be scanned by a 

real grayscale character image, or it can be created through a pseudo-grayscale image, 

which can be produced by using Medial Axial Transformation Algorithm (MAT).  In this 

thesis, we use the second method. 

MAT is a method of finding a binary image centre skeleton and at the same time, it 

changes a binary character image into a grayscale character image with maximum values 

on the central skeleton of the character. This method has the following advantages: 

(1) The algorithm can change a binary image into a grayscale image, which has richer 

information for image processing and pattern recognition; 
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(2) The transformed character image highlights the centre skeleton of the character 

strokes with maximum grayscale values and keeps stroke information and local 

information. 

Our iterative MAT algorithm is implemented as follows: 

1(a) Design the structure matrix of erosion as a 3x3 matrix E with all elements being set 

to 1 and set the initial iteration number as 1; 

1(b) Erode an NxN character image Im by the morphological erosion operator E, and the 

value of the eroded pixel in the character image is set equal to the current iteration 

number; 

 1(c) Increase the iteration number by 1, then repeat step 2 until no more new eroded 

pixels are created. 

Figs. 4.3 (a-b) show two binary images of Character “9” selected from MNIST. Figs. 4.3 

(c-d) is the MAT transformed character images of Figs. 4.3 (a-b), respectively. 

                       

     (a)                             (b)                                           (c)                             (d)    

 Fig. 4.3 Two binary character images (a,b) and their pseudo-grayscale character 

images after MAT (c,d) 

After getting the MAT transformed images, we can use the following steps to extract 

MAT gradient-based features: 
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1(b) Normalize the MAT image with its pixel values from 0.0~1.0; 

2(b) Convolute the normalized character image Iz with Sobel operators to generate the 

amplitudes and phases of the gradient image. 

The templates of the Sobel operators Sx and Sy are listed in Tables 4.1 and 4.2. 

 

Table 4.1 Template of Sobel operator Sx 

-1 0 1 

-2 0 2 

-1 0 1 

 

Table 4.2 Template of Sobel operator Sy 

1 2 1 

0 0 0 

-1 -2 -1 

 

The X-gradient character image can be calculated by: 

 Ix=Iz*Sx                                                                                                             ……  (4.4) 

and the Y-gradient character image is calculated by:  

 Iy=Iz* Sy                                                                                                             ……  (4.5) 

The gradient magnitude and phase are then obtained by: 

),(),(),( 22 jiIyjiIxjir +=  

),(
),(1

2

2

tan),(
jiIx
jiIyji −=θ

                                                                                ……  (4.6) 

2(c) Count the gradient direction of each pixel of the convoluted image with nonzero 

gradient magnitude values as a direction feature. 

In order to generate a fixed number of features, each gradient direction is quantized into 

one of eight directions at 4/π intervals. Each normalized gradient image is divided into 
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16 sub-images. The number in each direction of each sub-image is counted as a feature. 

In total, the number of features is 4x4x8=128. 

A scanned image can be affected by shadows, non-uniform illumination, and low 

contrast. Fig. 4.4 shows four simulated grayscale images affected by non-uniform 

illumination from four directions ((a) from right to left; (b) from left to right; (c) from 

bottom to top; (d) from top to bottom). 

If we do feature extraction on the four grayscale images of Fig. 4.4 (a-d), the different 

feature vectors will be obtained from those grayscale images. Namely, the features 

extracted from the four non-uniform illumination images are totally different. However, 

if we carry out the following operations, the feature extraction will be insensitive to the 

non-illumination. The procedure is listed as follows: 

1) Change a non-uniform illumination grayscale image into a binary image; 

2) Apply MAT transform to the binarized image to form a pseudo-grayscale image; 

3) Extract gradient-based features 

For example, the four non-uniform illumination images shown in Fig. 4.4 can produce the 

same MAT grayscale image, which is shown in Fig. 4.5. 

The four non-uniform illuminated grayscale images can produce the same MAT pseudo-

grayscale image, therefore, the MAT transformed image is insensitive to the variation of 

the illumination.  
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                            (a)                                                              (b) 
 
 
 

    
 
                        (c )                                                                 (d) 

Fig. 4.4 Grayscale character images affected by non-uniform illumination 
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Fig. 4.5 MAT transformed image from non-uniform illumination grayscale images 

of Fig. 4.4 (a-d).  

 

4.1.3 Feature Set III: Complex Wavelet Features 

As we know a real 2D wavelet transform suffers from the following problems: lack of 

shift invariance and poor directional selectivity [52]. (2D-CWT) overcomes these 

deficiencies. Our experiments have demonstrated that the 2D-CWT features for 

handwritten numeral verification can make an ANN classifier more reliable and it can 

converge more easily.  

Fig. 4.6 shows our proposed 2D-CWT feature extraction scheme for the recognition and 

verification of handwritten numerals. The dual-tree complex wavelet decomposition 

consists of two trees: Tree A and Tree B which have the same structure. In order to 

realize a perfect reconstruction from the decomposed subimages, a lowpass filter and a 

highpass filter at the first level need to be specially designed and denoted as Lop1 and 

Hip1 for tree A; Lop2 and Hip2 for tree B. Those special filters are called pre-filters. The 
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other complex filters in the higher levels are set to Lo1 and Hi1 for Tree A, Lo2 and Hi2 

for tree B.  

A character image of size NxN is decomposed into four subband images: LL, LH, HL, 

HH at the first level of each tree and each of the subband images has a size of 22
NN x .  At 

each higher level, the decompositions are based on the LL subband image at the previous 

level.  For example, if a 32x32 character is decomposed into the third level, the final size 

of each subband image is 4x4. Then we can extract the complex wavelet coefficients as 

features. 

                 

       

  Fig. 4.6 The schematic diagram of 2D-CWT for character feature extraction  

 

The feature extraction is conducted at the third level. We only keep amplitude 

coefficients for the three high frequency components and both amplitude and phase 

information for the low frequency component. The number of features = 4x4 (for each 
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subband image) *3 (high frequency subband images for each tree) *2 (trees) +4x4 (for 

each subband image) *2 (trees)* 2(parts: real and imaginary) =160.  As the real and 

imaginary coefficients of each LL subband image are extracted as features, the phase 

information is preserved with a good directional selectivity. 

4.1.4 Feature Set IV: Binary Image Gradient Features 

This feature extraction method is the same as that of MAT-based Directional Features 

except that no MAT transform is needed. The gradient features are extracted directly 

from the binary character image. A feature vector of 128 is extracted for each 

handwritten character image.      

4.1.5 Feature Set V: Median Filter Gradient Features 

Three steps are required to extract the median filter gradient features: 

1) To convolute a character image Im by a 2D median filter; 

The template of the 2D median filter is listed in Table 4.3  

Table 4.3 Template of 2D median filter 

1 2 1 

2 4 2 

1 2 1 

 

2) To use Robert operators on the median-filtered image to generate the amplitudes and 

phases; 

The templates of the Robert operators are listed in Tables 4.4 and 4.5. 
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Table 4.4 Template of Robert operator Rx 

0 0 0 

0 1 0 

0 0 -1 

 

Table 4.5 Template of Robert operator Ry 

0 0 0 

0 0 1 

0 -1 0 

 

3)  To count the gradient direction of each pixel with nonzero gradient magnitude values 

as a direction feature. So the total number of features is 128. 

4.1.6 Feature Set VI: Image Thinning Distance Features 

In a feature set, the distance features in both horizontal and vertical directions are 

extracted as follows: firstly, an NxN character image is thinned and the thinned image is 

scaled into an 8x8 array. The thinned image is scanned both horizontally and vertically, 

respectively. In the horizontal scanning, for each pixel in the 8x8 thinned image, if the 

value of the pixel is 0 (black), then the distance is 0; otherwise, the distance is set to the 

distance from that pixel to the nearest black pixel in both horizontal directions on the 

scanning line.  For any pixel, if there are no nearest black pixels in both directions, the 

distance of the pixel is set to the distance from the pixel to one of two edges, whichever 

has longer distance to the edge. 

In the vertical scanning, the same algorithm is applied. The distance features are 

normalized to [0.0, 1.0]. In total, there are 128 features. 
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4.1.7 Feature Set VII: Geometrical Features 

In order to explore a character’s geometric features, we use concave features on the 

character’s four profiles; middle line features; horizontal segment features on the left and 

right profiles; character width features in the top five rows; middle ten rows; and bottom 

five rows; as well as endpoint and crossing point features. These geometrical features are 

encoded as 20 features. 

4.1.8 General Purpose Recognizer and Its Recognition Performance Using Hybrid 

Features 

In handwritten character recognition, it is common sense that the recognition model 

consists of one General Purpose Recognizer (GPR) and various verifiers in order to boost 

the recognition rate. Fig. 4.7 shows such a recognition and verification system. 

 

Fig. 4.7 A recognition and verification system 
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The verification of confusing handwritten character pairs is a challenging task. It is also 

one of our research goals in this thesis. In Chapter 5, we will discuss this issue in detail. 

In this section, the recognition performance of a GPR using our proposed hybrid feature 

sets will be discussed. Conceptually speaking, the first six feature sets are statistical 

features. The last one is a structural feature set.  In order to complementarily congregate 

these feature sets for the recognition of handwritten numerals, we conducted a series of 

recognition experiments based on the combinations of feature sets. 

A three-layer ANNs with Back Propagation (BP) algorithm was used as a classifier with 

the following configurations: 

No. of nodes in the input layer: No. of features 

No. of nodes in the hidden layer: 150 

No. of nodes in the output layer: 10 (representing 10 digits) 

No. of training samples: 60000 (MNIST database) 

No. of testing samples:  10000 (MNIST database) 

Table 4.6 lists the recognition rates using different feature sets 

                   Table 4.6 List of Feature sets and their recognition accuracies 

Name of Feature Set      No. of Features   Recognition Accuracy (%) 

Feature Set A (I+VII) 100 98.55 

Feature Set B (II+VII) 148 98.58 

Feature Set C (III+VII) 180 98.30 

Feature Set D (IV+VII) 148 98.47 

Feature Set E (V+VII) 148 98.40 

Feature Set F (VI+VII) 148 97.55 

Feature Set G (I+(1/2)VI) 164 98.49 

Notes: The recognition rates range from (98.58%~97.55%).  
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In order to use verification procedure (which will be discussed in the Chapter 5) to 

increase recognition performance, we use Feature Set B as an example of error analysis: 

In the Feature Set B testing result, the recognition rate is 98.58%. It means that out of 

10,000 testing samples, there are 142 errors, of which, 40 testing samples are not voted 

into the top two ranks. This means that the general recognizer does not correctly vote for 

the recognized character in the top two ranks with the largest or second largest 

confidence values. The verification model cannot correct these errors any more. 

The remaining 102 errors occur in such conditions that: the general recognizer votes for 

another digit as the first output candidate, so the recognized character is misrecognized; 

however, the general recognizer votes for the recognized character as the second 

candidate with the second largest confidence values. Therefore, some of the errors in this 

category can be corrected in the verification model.        

 

4.2 Feature Selection with Divergence Criterion 

Divergence distance measurement is one of the feature selection criteria. Intuitively, if 

the features show significant differences from one class to the other classes, the classifier 

can be designed more efficiently with a better performance [83]. For our hybrid features, 

there are 772 features.  We need to develop some methods to keep powerful discriminant 

features and at the same time to delete the less useful features in order to easily use 

random forest feature selection.  
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4.2.1 Divergence Criterion 

In order to get the Gaussian-like distribution for each feature y, it is transformed to a new 

feature x by the following formula: 

 5.0yx =  

A commonly used distance measure density, and for its connection with information 

theory, is the Kullback-Leibler distance: 

dxCxpCCKL
j

i
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where 1≤ i,j ≤ K,  and K is the number of classification categories. In order to simplify its 

computation, a new version of distance divergence criterion based on Kullback-Leibler’s 

symmetric measurement of divergence is introduced in [4]: 

),(),(, ijjiji CCKLCCKLD +=                                                                             …… (4.8)    

The divergence is another criterion of class separability. Thus, the divergence is defined 

as:  
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For a multi-variable normal distribution, if we assume that the conditional probability of 

Ci  class is a normal distribution: ),( iix uN Σ  and that of Cj  is ),( jjx uN Σ .  For a feature 

vector x, the following formula will hold:  
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For simplicity, due to the difference in means between two classes, the divergence 

K(Ci,Cj) can be written as:  
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Therefore, the overall divergence can be defined as:  
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4.2.2 Divergence Criterion for Feature Selection in the Multi-class Classification         

Problem 

Although the divergence criterion provides a way to measure the distance between two 

classes, we can extend it to the multi-class case. In the multi-class pattern recognition, 

there are N classes, each represented by wi. The domain of the multi-class case can be 

denoted as W={w1,w2,w3,…, wN}.  Each class wi has Mi samples in the training database. 

A set of samples from the class wi is denoted by },...,,,{ 321 iM
iiiii ssssS = . A feature vector 

consists of d features: ),...,,( 321 dyyyyY = . 

For each feature yj, we can extract Mj feature values for each of the N classes, which are 

denoted by ),...,,...,( ,,2,1,
n

Mj
n

kj
n
j

n
j

n
j j

xxxxX = . Here, j=1,2,3,…, d, where d is number of 

features; n=1,2,3,…,N, where N is the number of classes; k=1,2,3,…, Mj, and Mj is 

number of training samples in the jth training class. 

The mathematical expectation value and variance of each sub-feature vector for each 

class is denoted as follows: 
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In the above two equations, nju , and 2
,njδ represent the expected value and variance of the 

jth feature in the nth class obtained from the training set. 

According to our analysis in the previous section, we can calculate the divergence 

coefficient for each feature m based on N classes. 
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where  )(, errp rl  is the misrecognition rate of the samples in the lth class, being 

recognized as the rth class. We can obtain it by training classifiers using the training 

samples, and testing classifiers on the test set without any feature selection beforehand. In 

Equations (4.14 & 4.15), less weight is put on those class pairs, which are inclined to 

cause more errors. As a result, those with more easily misrecognized classes will have 

less power to dominate the divergence coefficients for feature selection, thereby 

decreasing the recognition errors and improving the recognition performance.   

Fig. 4.8 (a, b, c) shows the distribution of the divergence coefficients for three feature 

sets:  

Feature Set I: Directional-Based Wavelet Features 

Feature Set II: MAT Gradient-Based Features 

Feature Set III: Complex Wavelet Features 

The features are ranked by the divergence coefficients from largest to smallest, not by the 

order of the features.  We can keep those features with larger divergence coefficients and 

delete the features with less divergence coefficients. 
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           (a) Distribution of feature set I                          (b) Distribution of feature set II 

 

 

           (c) Distribution of feature set III   

                         Fig. 4.8 Distribution of feature sets I, II, and III 

   Note: (DC: divergence coefficients) 

 

The extracted feature number can be chosen based on the following rule: we may add 

divergence coefficients in decreasing order until the accumulation exceeds a certain 

percent of the total sum; then we may set that number of the divergence coefficient order 

as a feature number to retain. Alternatively, we may retain the divergence coefficient that 

is greater than the given proportion of the largest divergence coefficient and we may set 

the retained feature number.     
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From Fig. 4.8 (a, b, c), it can be observed that Feature Set II: MAT gradient-based feature 

set has the best convergence property.  It indicates that for Feature Set II, more 

discriminate information is accumulated in a few feature components compared to 

Feature Sets I and III. Our experiments have demonstrated that Feature Set II has the 

highest recognition rate for an ANN classifier.  

In order to reduce the dimensions of features by deleting some less useful or no 

information features, we retain the different number of features for each original feature 

set according to its divergence distribution. In total, 450 features are kept for random 

feature selection. 

 

4.3 Random Feature Selection   

Given a large number of features, especially consisting of different sets of features, most 

likely, from the information theoretical point of view, the features from different sets are 

complementary because they are extracted in different ways. In order to increase 

recognition rate and reliability, we design several classifiers. Each individual classifier 

can be trained by only a subset of all features. The subset of features is randomly chosen 

from the entire set of features.  

After deleting less useful features, we use the Random Feature Selection method (RFS) to 

construct three new feature sets, by randomly choosing feature components from the 

seven newly ranked feature sets. The three new random feature sets are called Random 

Feature Set I (200), Random Feature Set II (218), and Random Feature Set III (240).  The 

number in the bracket is the number of dimensions. Unlike other selection schemes, 
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which only select the features from the ranked feature sets, the random scheme can 

produce more than one set of features. Some feature components can be overlapped.   

The systematic diagram is shown in Fig. 4.9 

We conducted recognition experiments on the general purpose recognizers for the 

recognition of handwritten numerals by using the three new randomly selected hybrid 

feature sets. The ANN classifier was used for classification. As expected, the recognition 

results were better than any of the seven original feature sets reported in section 4.1.8. 

 

Fig. 4.9 The schematic diagram of hybrid feature extraction and random feature 

selection 

 

Further experiments on the combination of three ANN classifiers using three random 

feature sets were conducted. The majority vote was used in the experiments. The overall 

recognition rate was 99.16%.   

The recognition results using three sets of randomly selected hybrid features are listed 

below: 
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Feature Set                                                                        Recognition Rate 

Classifier I   (Random Feature Set I: 200)                                    99.11% 

Classifier II  (Random Feature Set II: 218)                                  98.90% 

Classifier III (Random Feature Set III: 240)                                99.12%       

Combination of Classifiers I, II, III (Majority Vote)                   99.16% 

Note: The number in the bracket after Feature Set I, or Feature Set II, or Feature Set III is the 

number of the feature dimension. 

 

From these experiments, three randomly selected hybrid features showed the higher 

recognition performances compared to the seven original feature sets. As the dimensions 

of the feature sets are still high (>100), we will propose a feature dimensionality 

reduction method for handwritten numeral verification in the next chapter. 
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Chapter Five 

Feature Dimensionality Reductions for Handwritten 

Digit Verifications1  

 

In this chapter, we propose a novel multi-modal analysis to reduce feature dimensionality 

and we successfully use our proposed method to compress large-scale features for the 

verification of confusing handwritten character pairs without losing classification 

discrimination ability. Firstly, the k-means algorithm is applied to each class, which 

divides each class data into several clusters. Then, both the within-class scatter matrix 

and the between-class scatter matrix of the multi-modal data are calculated based on 

cluster information and decision boundary information. Finally, feature vectors are 

formed based on the optimal discriminant criterion. 

 

5.1 Discriminant Analysis Criterion for Feature Dimensionality        

Reduction 

In a large feature set, the correlation of features is complicated.  Retaining informative 

features and eliminating redundant ones is a recurring research topic in pattern 

recognition.  Generally speaking, feature extraction and dimensionality reduction serve 

two purposes: (1) to improve the training and testing efficiency, (2) to improve the 

reliability of a recognition system. 
                                                 
1 This work was published in the Pattern Analysis and Applications, Vol. 7, No. 3, Dec. 2004, pp. 296-307. 
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There are two methods of feature dimensionality reduction. One is feature selection.  

Another method is to use an optimal or sub-optimal transformation to achieve feature 

dimensionality reduction.  The latter is an information congregation operation, and this 

study deals with it. As mentioned in chapter one, the nonparametric discriminant analysis 

is a useful and efficient way in statistical pattern recognition. The within-class Sw matrix, 

between-class Sb matrix, and mixture scatter Sm matrix have all been used for optimal 

discriminant analysis, which were defined in Equations 2.2-2.5 in chapter one. 

In order to implement a linear mapping from an N-dimensional feature vector to an M-

dimensional feature vector ( NM ≤ ), one optimal discriminant analysis criterion, which 

is derived from Fisher discriminant analysis [26], has been defined in Equation 2.6. Here, 

we rewrite it in Equation 5.1 as follows: 

)( 1
bw SStrJ −=                                                                                                 ……  (5.1)                          

This criterion aims at minimizing within-class separability and at the same time, 

maximizing between-class separability in order to achieve the best discriminant ability 

for pattern recognition.   

 

5.2 Multi-Modal Discriminant Analysis for Dimensionality Reduction 

As handwritten digits vary a lot in writing styles, each class of numerals can be 

represented by multi-modals. Therefore, in this section, we will conduct multi-modal 

discriminant analysis for dimensionality reduction. 
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For a two-class problem, let X be an N-dimensional feature set obtained from training 

samples, under the hypothesis:  Hi: X∈ iw ,  i=1,2. The recognition decision can be made 

according to Bayes’ decision rule: 

If )|()()|()( 2211 wXPwPwXPwP > , 

then  1wX ∈ , 

otherwise  2wX ∈  

where )|( iwXP  is a conditional density function; Pi is the probability of class i, i=1,2.  

Let )|(
)|(

2

1)( wXP
wXPXh =   and     )(

)(
1

2
wP
wPt = ,  

then 1wX ∈   if  h(X)>t,   else  2wX ∈ .  

We will find a subspace Φ , with the minimum dimension M ( M ≤ N ) and the spanning 

vector { iφ } of the subspace such that for any observation X 

0))()()(( >−− tYhtXh                                                                                         …… (5.2) 

where Y is an approximation of X in the basis of the subspace. The meaning of expression 

(5.2) is that the classification result of Y is the same as the classification result of X.  In 

practical applications, features can be selected in such a way as to maximize the number 

of observations for expression (5.2) while keeping the dimensionality of Y as small as 

possible.  

The decision boundary is defined as })(|{ tXhX = .  A decision boundary can be a line, a 

plane, a curved surface or a curved hyper-surface.  Although a decision boundary can be 

extended to infinity, in most cases, the effective decision boundary is the region where 

most of the data are located and can be classified [66]. In that sense, the classification 

criterion should be chosen by the data on and nearthe decision boundary. Those training 
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data, which are located far from the effective decision boundary, will play little or no role 

in classification. 

Hybrid features are drawn from a wide mixture of different kinds of features, such as 

geometrical features, wavelet features, etc. The hybrid features are extracted by different 

methods, some of which can be complementary. In addition, handwritten characters have 

a variety of writing styles. For instance, different handwritten writings of “4” and “6” are 

shown in Fig. 5.1. Therefore, the distributions of hybrid features are likely multi-modals.  

      

  
     

 
              
              Fig. 5.1 Different writing styles of handwritten “4” and “6” 

 

 Fig. 5.2 shows a simple illustrative example of multi-modal data distribution. 
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                                    Fig. 5.2 Multi-modal data distribution    

The effective decision boundary is highlighted by the masked area in the middle of Fig. 

5.2, which is located at the intersection of classes w1 and w2. As the distribution of each 

class along the decision boundary is a complex curvature, we divide the training data of 

each class into several categories, such as clusters 11, 12, 13 for class 1 and clusters 21, 

22, 23 for class 2 by using k-means or other clustering algorithms for a better estimation 

of the within-class scatter matrix and the between-class scatter matrix. The number of 

clusters in each class is selected from the writing styles of the training handwritten 

numerals. We can use an unsupervised clustering method [32] to get the number of 

clusters for each handwritten numeral beforehand.    

It is true that there are cases such that using one modal of features fails to represent the 

best feature vectors or even good features. Hence, we propose a multi-modal discriminant 

analysis method for feature dimensionality reduction. 

For a two-class classification problem: class w1 and class w2, each class is divided into 

several clusters, denoted as {C1i | i=1,2,…,r1} for w1; and {C2i | i=1,2,…,r2 } for w2. We 

calculate the within-cluster scatter matrix of each cluster and congregate it to form the 

within-class scatter matrix Sw as follows: 



 75

T
ijijkijijk

i

r

j

N

k
Nw XEXXEXS

i ij

ij
))())(((

2

1 1 1

1 −−= ∑ ∑ ∑
= = =

                               …… (5.3) 

where iijijk rjiCX ,...,2,1;2,1; ==∈ ; Nij:   the number of  training samples in  Cij ; and 

E(Xij )  is the mean of all training samples in Cij . 

As each class has been separated into ir  clusters, the training data in each cluster are 

more centralized. As a result, Sw will be less scattered than the mono-modal case. 

In order to find the between-class scatter matrix Sb, first, for each cluster j of class one, 

we find k-NN data in cluster l of class two, with k-NN distance corresponding to the mean 

of cluster j in class one. The k-NN data can be denoted as: 

},...,2,1;,...,2,1|)({ 211 rlrjCX j
knn
l ==                                            

Similarly, we calculate k-NN data for each of r2 clusters of class two. The k-NN data in 

class one corresponding to each cluster in class two is denoted as: 

 },...,2,1;,...,2,1|)({ 122 rlrjCX j
knn
l ==                                        

Here )( ij
knn
l CX  represents the k-NN data of the lth cluster in the class other than i class, 

which is related to the jth cluster of class i, where i=1,2. For the verification experiments 

of handwritten numeral pairs, we do not have any theory on choosing the number of k-

NN’s. We set the number of k-NN’s equal to min (Nij/10, 50), according to the 

experimental results. 

The above definition guarantees that the extracted k-NN data are located on and near the 

effective decision boundary and we will therefore use these data to compute the between-

class scatter matrix. The following is a definition of an adjacent function. 

Definition 5.1 Let function Adj(m,n)=1, if and only if the mth cluster in class i is adjacent 

to the  nth cluster in the class other than class i, where i=1,2.  
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The between-class scatter matrix is calculated as follows: 

→=∀∀ ≤≤≤≤ )1),(((
21 11 nmAdjrnrm   

)))](()())][(()(([ 1212
,

1
T

m
knn
nn

knn
mm

knn
nn

knn
m

nm
b CXECXCXECXES −−= , 

and  →=∀∀ ≤≤≤≤ )1),(((
12 11 mnAdjrmrn  

)))](()())][(()(([ 2121
,
2

T
n

knn
mm

knn
nn

knn
mm

knn
n

mn
b CXECXCXECXES −−= , 

)( ,
2

1 1

,
1

1 2
mn

b

r

m

r

n

nm
bb SSS += ∑∑

= =
                                                                            …… (5.4) 

where ))(( 1m
knn
n CXE  denotes the mean of the k-NN  in cluster n of class two, 

corresponding to the mean of the cluster m in class one; and ))(( 2n
knn
m CXE  represents the 

mean of the k-NN in cluster m of class one, corresponding to the mean of the cluster n in 

class two. 

 The determination of the mth cluster in one class being adjacent to the nth cluster in 

another class is based on Euclidean distance between the means of two clusters. If the 

distance between two clusters is less than or equal to a given threshold T, then the two 

clusters are said to be adjacent to each other. In our experiment, we assume each cluster 

is with Gaussian distribution and the threshold T is set equal to  

|| 21 MMcT −=                                                                                                   …… (5.5) 

where M1 is the mean of class one; M2 is the mean of class two; and c is a weight 

coefficient. We have conducted experiments with different ranges of c on the verification 

of different handwritten pairs to estimate the optimal value for this parameter. In many of 

our experiments, we set the weight coefficient c to 0.85 < c <1.20.  
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The algorithm complexity for Sb is analyzed as follows: we assume that there are r1 

clusters in class one and r2 clusters in class two. For each cluster in class one, we need to 

calculate the k-NN of each cluster in another class by using the quick sort algorithm. The 

algorithm complexity of k-NN computation is approximately )log(
22 r

N
r
NO  for each cluster 

in class one, and )log(
11 r

N
r
NO  for each cluster in class two. The computational complexity 

of Equation (5.4) is approximately equal to )( 2
2

2
1

2 rrnO , where n is the dimension of a 

feature vector. The overall computation complexity of Sb  is 

))log()log(( 2
2

2
1

2
21 1122

rrnrrO r
N

r
N

r
N

r
N ++ .  All of n, r1, r2 are constants, where Nr <<1 , 

Nr <<2 , Nn << ,  and 1021 <≈ rr , n=100 in the experiments, so the computation 

complexity of Sb is )log( NNO , which is much smaller than that of NDA, which is 

)log( 2 NNO .     

We now present our algorithm as follows:   

1) Use the k-means algorithm to cluster the training data of each class into ri clusters, 

denoted by  {Cij  | i=1,2;  j=1,2,…, ri }, and count the number of each cluster as Nij . 

2) Calculate the within-class scatter matrix Sw in Equation (5.3). 

3) Linearly transform the original features X by the following equation (5.6), so that Sw is 

the identity matrix in the transformed space. 

This procedure can be implemented using an NxN matrix  

TT ΦΛ= − )2/1( , 

XTY •= .                                                                                                           …… (5.6) 
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where Λ is an NxN diagonal matrix whose diagonal elements are the eigenvalues of Sw, 

and Φ is an NxN matrix, where the ith row is the ith eigenvector  of  Sw, corresponding to 

the largest ith eigenvalue of Sw. 

4) Compute the between-class scatter matrix Sb in (5.4) based on the transformed feature 

matrix Y. 

5) Find the M largest eigenvalues and the corresponding M eigenvectors and form the 

selected feature vectors: 

],...,,[ 21 Mψψψ=Ψ  

Thus, the transformation from the original N-dimensional data into the M-dimensional 

features can be formed by TT ΦΛΨ − )2/1( . 

The extracted feature number M can be determined based on the following rule: we may 

add eigenvalues of Sb in decreasing order until the accumulation exceeds a certain 

percentage of the total sum, then we set that number of the eigenvalues as a feature 

number to retain. Alternatively, we may retain the eigenvalues that are greater than a 

given proportion of the largest eigenvalue and set the retained feature number. 

Our proposed multi-modal discriminant analysis has the following properties: 

(1) The within-class scatter matrix Sw is more centralized because it is computed from 

multi-modal clusters; 

(2) The k-NN data of all clusters in two classes are located on and near the effective 

decision boundary and these data can represent more truthfully the whole complex 

distribution along the effective decision boundary; 
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(3) The computation of the between-class scatter matrix Sb is based on the k-NN training 

samples on and nearthe effective decision boundary rather than on the whole training set, 

which therefore has much less computation than NDA; 

(4) The optimal discriminant criterion )( 1
bw SStrJ −=  is used to generate the 

transformation matrix, which has the functionality of minimizing the within-class 

distance and maximizing the between-class distance. As a result, our proposed method 

for calculating Sb and Sw leads to a criterion being minimized for within-class separability 

and being maximized for between-class separability. Hence, the discriminanting ability is 

enhanced for pattern recognition.   

In conclusions, multi-modal analysis can be used in the complex distribution situations. 

No prior assumptions need to be made about class and cluster densities. However, for a 

two-class classification problem, if the training samples in two classes overlap heavily, 

the computation of the between-class scatter matrix will be affected. In such a case, more 

clusters are needed to reduce the degree of overlap.         

 

5.3 Handwritten Numeral Verification  

In order to increase the recognition rate of GPR, we need a model to verify the 

recognized digits. In this chapter, we will only focus on pair-wise and cluster 

verifications. For improving the efficiency and stability of the classifier for verification, 

we use our proposed method to conduct feature dimensionality reduction experiments. 

The verification of confusing handwritten numeral pairs is a challenging task because the 

confusing character pairs are quite similar in terms of the features used in GPR (General 

Purpose Recognizer) or in terms of their shapes. It is necessary to develop a new 
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verification engine to explore detailed hybrid features for distinguishing between these 

similar and easily confusing character pairs. Theoretically, for 10 numerals, there are 45 

confusing digit pairs (10x9/2=45). For cluster verification, the clusters with three 

characters are also discussed in the next sections.  

 There are four types of verifiers according to the number of classes. Let Ω denote the 

working space of a verifier, and let | Ω | denote the dimension of the space. The four 

verifiers are: 

| Ω | =n: General verifier, working on all classes in the problem. 

0<| Ω |<n: Cluster verifier, verification of clustered categories e.g. (Is it a “4”, “6”, or 

“9”?). 

| Ω |=2: Pair-wise verifier, verification between two categories e.g. (Is it a “4” or “9”?). 

| Ω |=1: Class-specific verifier, working on one candidate class e.g. (Is it a “1”?). 

Generally speaking, hybrid features are extracted by various means in such a way that 

they are more likely to be complementary to each other, which is helpful for the 

verification of similar characters. We use the directional-based wavelet features and 

geometrical features in the experiments. The extraction of the two feature sets were 

presented in Chapter Four. Here, the dimensionality of the two feature sets is listed 

below: 

Dimension of directional-based wavelet features = 80 (Feature Set I in Section 4.1.1)  

Dimension of geometric features =20 (Feature Set VII in Section 4.1.7) 

So the total number of original features used in our experiments becomes 80+20=100. 

For the classifier, we choose a three-layer ANN with Back Propagation (BP) training 

algorithm, using the following parameters: the number of nodes in the input layer is the 
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same as the number of features; the number of nodes in the hidden-layer is set at 20 and 

the number of nodes in the output layer is 2 to represent two classes.  

Our experiments focus on a pair-wise verifier, which is a one-to-one verification between 

two categories. From our observations, some of the most confusing numeral pairs [85] 

are {4,6}, {0,8}, {2,3}, {2,1}, {4,0}, {7,3}, {9,7}, {4,9}, {5,3}, {0,6}, {8,3}, {7,1}, 

{9,5}, {7,2}, {9,8}, {8,2}, {6,5}, {8,5}, {9,0}, {8,4}, etc. depending on the output of 

GPR and the features used in the GPR.  In order to test our proposed method for feature 

dimensionality reduction, as an example, the verification results of experiments 

conducted on handwritten numeral pairs “4” and “6” are analyzed and the verification 

results of other pairs are summarized.    

• Database 

We extracted three sets of data from the MNIST database. For each character in the pair, 

the first 3,000 samples are used as training samples; another set of 1,000 samples for 

verification while training, and the last 1,000 samples for testing.  

For example, for the verification of handwritten numeral pair “4” and “6”, we construct 

the training, verification and testing datasets as follows:  

Character       Training dataset      Verification dataset         Testing dataset                    

     4                         3,000                        1,000                              1,000    

     6                         3,000                        1,000                              1,000 

 

• Verification Experiments Conducted on Characters “4” and “6” 

As an example of the verification on the pair-wise numerals “4” and “6”, 100 original 

features of each of the 3000 training samples and each of the 1000 verifying and the 1000 
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testing samples of character pair “4” and “6” were used as original data. Each class was 

divided into six clusters by k-means. The number of clusters in each class was 

determined empirically by the writing style of testing samples of the numeral pairs. To 

evaluate our proposed algorithm for dimensionality reduction, we conducted a series of 

experiments on different numbers of features extracted by our proposed method. For 

example, Figs 5.3-5.6 show the recognition rates obtained from the training samples, the 

ANN training errors, and the verification rates on characters “4” and “6” with the feature 

dimensionality varying from 100, 50, 10 until to 1. 

 

Fig. 5.3 ANN training and testing on 100 original features 
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Fig. 5.4 ANN training and testing on 50 features extracted by our proposed method 

  

 Fig. 5.5 ANN training and testing on 10 features extracted by our proposed method 
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    Fig. 5.6 ANN training and testing on 1 feature extracted by our proposed method 

 

From Figs. 5.3-5.6, it can be observed that the recognition rates on the training samples 

and the verification rates on the verification samples do not deteriorate much, or not at 

all, when the feature dimensionality is reduced by our proposed algorithm. It means that 

our proposed method can be applied to large-scale feature compression without losing 

much discriminating information. 

• Verification Experiments Conducted on Other Character Pairs 

We conducted feature dimensionality reduction experiments on 20 of the most confusing 

pairs listed in reference [85]. All the verification experiments were conducted on 2000 

testing samples (the ANN classifier was trained by 6000 training samples). In order to 

save space, we only list the verification results of the first 10 character pairs with 

experiments, conducted on different numbers of features, as shown in Table 5.1.    
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Table 5.1 Verification rates at different dimensionalities  

    CP 

 

FD 

 

4 & 6 

 

0 & 8 

 

2 & 3 

 

2 & 1 

 

4 & 0 

 

7 & 3 

 

9 & 7 

 

4 & 9 

 

5 & 3 

 

0 & 6 

100 99.8 99.7 99.3 99.6 99.5 99.5 99.6 99.2 99.4 99.5 

70 99.8 99.7 99.3 99.6 99.5 99.5 99.6 99.2 99.4 99.5 

50 99.8 99.7 99.3 99.6 99.5 99.5 99.6 99.2 99.4 99.5 

20 99.8 99.6 99.3 99.6 99.4 99.5 99.6 99.2 99.4 99.5 

10 99.8 99.6 99.2 99.6 99.4 99.5 99.5 99.1 99.3 99.5 

5 99.6 99.5 99.2 99.5 99.4 99.5 99.5 99.1 99.2 99.4 

1 99.5 99.4 99.1 99.4 99.3 99.4 99.4 99.1 99.1 99.3 

( CP: character pairs, FD: feature dimensionality) 

 

The features retained in each dimensionality from 1 to 100 are chosen by our proposed 

multi-modal discriminant method described in Section 5.2.   

Table 5.2 presents a comparison of ANN training times of different numbers of features 

conducted on 6000 training samples using our proposed method. 

Table 5.2 ANN training times for different numbers of features 

No. of  Features Training Time (s) 

100 3900 

70 2700 

50 2010 

20 850 

10 500 

5 310 

1 177 
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The experimental results show that our proposed method can keep a very high feature 

compression rate without losing much information on classification ability. As a result, 

this new method can reduce ANN’s training complexity and can accelerate the ANN 

training procedure with a higher reliability. 

• Verification Model to Increase the General Recognizer’s Performance 

In chapter 4, when Feature Set B was used as input to the general recognizer, the 

recognition rate was 98.58%. In the 10,000 testing samples of the MNIST database, 40 

testing samples were not voted on the top two ranks, which could not be corrected by the 

verification model. The other 102 errors occurred when the general recognizer votes for 

the recognized character as the second candidate. Some of the errors in the category 

could be corrected. 

A verification experiment was conducted on the 9960 testing samples (9,858 correctly 

recognized digits in the general recognizer + 102 misrecognized digits with second 

largest confidence values in the general recognizer). The verification modal used 20 

compressed features of Feature Set A.  

The overall recognition rate (General recognizer + Verifier) has been increased from 

98.58% to 99.10%.   

 

5.4 Handwritten Numeral Recognition using a Verification Model 

     
Fig. 5.7 shows a character recognition system. We designed ten absolute verifiers for 

classification (e. g. one absolute verifier for distinguishing one numeral from the other 
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nine numerals). The output of the General Purpose Recognizer (GPR) is the congregation 

of the ten verifiers.     

Input Preprocessing &
Segmentation

0

1

9  

Congregation of
Verifiers Output

Absolute 
Verifier

General 
Purpose 

Recognizer

                      

          Fig. 5.7 A character recognition system using ten absolute verifiers 
 
 

Our experiments focused on the absolute verification between two categories (e.g., 

classifying one numeral from the mixed class with the other nine categories). For 10 

numerals, we needed to build ten classifiers. Therefore, the congregation of the ten 

classifiers, led to a higher recognition result. 

The training and testing procedures and ANN classifier configurations are the same as 

those used in Section 5.3. 

 
• Verification Experiment Distinguishing Numeral 4 from Other 

Numerals 
 
Class of number 4 is divided into six clusters and the class of the mixed numbers 

(including characters 0, 1, 2, 3, 5, 6, 7, 8, 9) is divided into seventeen clusters, 
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empirically based on the similarity of features extracted from each class. Fig. 5.8 shows 

the recognition rate obtained from the training samples, the ANN training error, and the 

verification rates, conducted on two categories (character “4” and mixed characters),  

using 100 features with ANN iterations. As the training data in one class “4” and another 

class with the mixed numbers are highly imbalanced, we used the prior duplication 

method to keep the training data balance, which was introduced in Section 3.3.  

 

 

Fig. 5.8 ANN training and testing results conducted on 100 features of “4” and 
the mixed characters  
 
 

• Congregation of Verification Results for Handwritten Numeral 
Recognition 

 
We conducted nine other absolute verification experiments in the same way as described 

before. Table 5.3 lists the recognition rates conducted on ten handwritten numerals with 
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different features extracted by our proposed method. These results compare favorably 

with those obtained by other researchers in the field. 

 
Table 5.3 Recognition rates conducted on ten numerals 
 
  

100 

 

70 

 

50 

 

20 

 

10 

Char. 0 99.1 99.0 99.0 98.6 98.4 

Char. 1 99.2 99.1 99.0 98.7 98.3 

Char. 2 99.0 98.7 98.6 98.4 97.8 

Char. 3 98.9 98.7 98.5 98.3 98.0 

Char. 4 99.0 98.3 98.2 98.1 97.3 

Char. 5 99.0 98.4 98.2 98.1 98.0 

Char. 6 99.1 98.9 98.6 98.4 98.4 

Char. 7 99.3 99.1 98.8 98.5 98.0 

Char. 8 99.1 99.0 98.7 98.4 98.1 

Char. 9 98.7 98.4 98.1 98.0 97.5 

Note: NF: No. of Features; CH: Characters 

Experiments demonstrated that if fewer features are used during the ANN training, then 

fewer training iterations are needed for ANN convergence.  In other words, the feature 

dimensionality reduction could greatly speed up the ANN training procedure and could 

make the ANN training converge more easily.     

 

5.5 Verification Experiments Conducted on Clusters 

It is possible that the GPR can output three or more candidates with similar confident 

values. In order to investigate how our proposed complex wavelet features (dimension of 

feature vector =160) and geometrical features (dimension of feature vector =20) can be 

NF

CH 
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used for cluster verification, we conducted verification experiments on some confusing 

clusters with three characters in each cluster, such as {2, 3, 5}, {1, 7, 9}, {4, 6, 9,},{0, 6, 

9}, etc. As an example, the recognition rate conducted on the training set, the verification 

rates conducted on the verifying set and the testing set of cluster {2, 3, 5} are shown in 

Table 5.4. 

Table 5.4   The training, verifying, and testing results conducted on cluster {2, 3, 5}   

Character  pairs 2 - {3,5} 3 - {2,5}  5 - {2,3} 

Recognition rate of training set     (%) 99. 65 99.55 99.60 

Verification rate of verifying set   (%) 99.10 99.10 99.15 

Verification rate of testing set       (%) 99. 05 99.10 99.10 

 

 Similar verification experiments were conducted on three other clusters :{1, 7, 9}, {4, 6, 

9} and {0, 6, 9}.  Table 5.5 lists the overall verification results on the testing sets for the 

three clusters. 

        Table 5.5 Verification rates conducted on testing sets of three clusters 

   Clusters Overall verification rate (%) 

{1,7,9}  99.20 

{4,6,9}  99.10 

{0,6,9}  99.15 

 
It can be concluded that the verification model can be used on clusters and good 

verification performances have been achieved.  

 



 91

5.6 Comparison with Other Similar Methods 

Fukunaga et al. [31] developed a mono-modal nonparametric discriminant analysis 

method based on optimal criterion )( 1
bw SStrJ −=  for classification problems. Hastie et 

al. [39-41] proposed a mixture discriminant analysis method to cluster each class into 

subclasses and to model each class by a mixture of two or more Gaussians with different 

centroids, then both of the flexible discriminant analysis and the penalized discriminant 

analysis adapt naturally to MDA, which is the prototype of our multi-modal method. 

Furthermore, the authors used a local linear discriminant analysis to estimate an effective 

metric for iteratively computing neighborhoods, and then to shrink neighborhoods in 

directions orthogonal to these local decision boundaries, and to elongate them parallel to 

the boundaries. Therefore, their global dimension reduction combines local dimension 

information. Bressan et al. [5] modified the computation of Sw of NDA by calculating the 

k-NN of each training sample in the same class and computing the within-class scatter 

matrix based on the difference between the training sample and its k-NN mean.  

Our approach is based on Fukunaga et al.’s mono-modal nonparametric analysis. The 

concept of multi-modal discriminant analysis is inspired by Hastie et al.’s mixture 

discriminant analysis. However, our approach is different from their methods. The 

number of clusters in each class can be obtained by the unsupervised clustering method. 

Then Sw is calculated from the clusters, making it more centralized. We only consider the 

k-NN of each cluster, corresponding to each cluster coming from a different class, which 

guarantees that those k-NN training samples are located on the effective decision 

boundary when computing Sb. The optimal Fisher criterion based on our proposed Sb and 

Sw is used to generate a transformation matrix for maximizing the between class distance 
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and at the same time, minimizing the within class distance to increase the discriminant 

ability of the classifier. In addition, the overall computational complexity of the 

transformation matrix is less than those of other similar approaches.  No prior 

assumptions about class and cluster densities are needed.    

Fukunaga and Mantock’s NDA [31] was a pioneer work on nonparametric discriminant 

analysis for dimensionality reduction. Bressan and Vitria’s MNDA [5] is an example of a 

recent development for improving the recognition performance, which is similar to our 

approach. In order to compare our proposed method with PCA, NDA as well as MNDA, 

Fig. 5.9 shows four verification results derived from the average testing results of 20 of 

the most confusing numeral pairs. 

 

   

      Fig. 5.9 Comparison of the verification performance of four methods 
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Among the four methods, our proposed method shows a better verification rate than NDA 

and MNDA on different features. The PCA algorithm had the worst performance.  

The reason why our proposed method leads to a better classification performance than 

other similar approaches is that our method uses more relevant information on and near 

the decision boundary.  

As we have analyzed in the previous section, to get the optimal criterion J, the 

computational complexity of the Sb for both NDA and MNDA is 

approximately )log( 2 NNO ; whereas in our proposed method, it is )log( NNO . Table 

5.6 is the CPU time comparison of three similar methods to generate Sb (Experiments 

were conducted on an IBM PC computer with CPU speed of 2.0 GHz).      

 

Table 5.6   Comparison of CPU time needed to generate the between-class scatter matrix 

  Training Samples CPU  Time (second) 

MNDA 6000 1440 

NDA 6000 1440 

Our proposed method 6000 12 
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Chapter Six  

Analysis of Error, Rejection, and Recognition Rates in a 

Cascade Ensemble Classifier System 

 

In this section, we will analyze the tradeoffs in error, rejection, and recognition rates in a 

cascade ensemble classifier system which consists of several levels of ensemble 

classifiers. An ensemble classifier is the combination of individual classifiers. The 

tradeoff analysis is conducted on an ANN classifier, an ensemble classifier and a cascade 

ensemble classifier, respectively. The solutions for improving recognition performance 

will be given.  

 

6.1 Analysis of Error, Rejection, and Recognition Rates in an ANN 

Classifier 

In our proposed classification system, ANNs are the dominant classifiers. We will 

analyze the relationships among the error, rejection and recognition rates of an ANN 

classifier using Bayesian probability theory. According to the rule of thumb [97]: 1) for a 

multi-class problem, a multilayer perceptron neural network trained with back-

propagation has good estimates of Bayesian probabilities; 2) interpretation of network 

outputs as Bayesian probabilities makes it possible to compensate for differences in 

pattern class probabilities between test and training data, the error analysis of an ANN 

classifier is based on Bayesian estimation. 
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In order to pursue the highest reliability and the lowest error rate with rejection strategy, a 

recognition rule is optimum if for a given recognition rate, it minimizes the error rate 

(error probability) and puts the uncertain testing candidates into the rejection category. 

According to reference [17], suppose there is the n-class problem and X is a feature 

vector, if the decision rule has a rejection strategy, we need to build up an additional class 

(for example, the 0th class) to represent the rejection category, so that 

If ( 1)|( =XdVote k ) and ( nk ≤≤1 )   then X is classified; 

If ( 1)|( =XdVote k ) and ( )0==k    then X is rejected. 

The optimum rule is to reject the pattern if the maximum of the a posteriori probabilities 

is less than the defined threshold. According to Bayesian probability theory, the optimum 

rule has the following two conditions: 

 1)  To accept the pattern X for recognition and to identify it as belonging to the k-th 

pattern: 

 1)|( =XdVote k                                                                                                        

if and only if   

         )|()()|()( iikk XFPXFP ωωωω ≥                                

and 

       )|()()1()|()(
1

i

n

i
ikk XFPtXFP ωωωω ∑

=

−≥                                                    …… (6.1)                        

2) To reject the pattern X:  

1)|( 0 =XdVote                                                                                                          

whenever 
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)|()()1()|()([max
1

i

n

i
ikkk

XFPtXFP ωωωω ∑
=

−<                                                 …… (6.2)                         

where  n is the number of classes, )( iP ω  (i=1,2,3,…n) is a priori probability of observing 

class iω , )/( iXP ω  is the conditional probability density for X given the ith class, and t is 

a constant parameter between 0 and 1 )10( ≤≤ t . The relationships among the error, 

rejection, and recognition rates are listed below: 

The probability of error, or error rate, is:  

dXXFPXdVotetE iij
v

n

i

n

ij
j

)|()()|()(
1 1

ωω∫∑∑
=

≠
=

=                                                       …… (6.3) 

The probability of rejection or reject rate is:  

dXXFPXdVotetR i

n

i
i

v

)|()()|()(
1

0 ωω∑∫
=

=                                                            …… (6.4)                

The probability of a correct recognition rate is: 

)()(1)|()()|()(
1

tRtEdXXFPXdVotetC ii
v

n

i
i −−== ∫∑

=

ωω                                 ……  (6.5)               

From the above analysis, we know that the error, rejection, and correct recognition rates 

are implicit functions of the threshold parameter t. 

The probability of the acceptance or acceptance rate is defined as:  

)()()( tEtCtA +=                                                                                                 …… (6.6)                          

The reliability of the recognition system is denoted as: 

)()()Re( tRtCt +=                                                                                                …… (6.7)   

In a neural network classifier, the confidence threshold (Conf) can be related to the 

parameter t . The relation is denoted as: 
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)1(* twANNconf −=                                                                                         …… (6.8)                        

where w  is an empirical factor, which is selected based on how high the reliability is set. 

Normally, in our experiments, w  is set between 1.0-2.0. Equation (6.8) demonstrates that 

an ANN classifier can introduce a rejection strategy by setting a high threshold of 

confidence value. Based on the above analyses, there are several ways to reduce both the 

rejection rate and the error rate: 

• In order to reduce the error rate, we need to expand the “rejection region” by 

setting a smaller parameter t  in equations (6.1) and (6.2). As a result, more 

patterns are rejected and fewer patterns are either falsely or correctly accepted. 

For example, in a neural network classifier, the confidence threshold confANN  can 

be set at a high value. 

• Based on equation (6.2), in order to reduce the rejection rate, we can increase the 

value of )|()([max kkk
XFP ωω  and at the same time, we can reduce the value of 

)()(
1

i
n

i
i XFp ωω∑

=
. In practical applications, when a feature vector ( X ), which is 

extracted from a labeled class i, is input into an ANN classifier, the ANN 

classifier should have the highest conditional probability density ( )|( iXF ω  for 

the labeled class i and the lowest probability density in all other classes. This 

means that the more discriminative features play an important role in reducing the 

rejection rate. 

For simplicity, as an example of two classification problems, each feature vector X is an 

m-dimensional vector. We assume that the two classes have the same a priori probability, 
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i.e., 2
1

21 )()( == ωω PP ,  and the feature vectors are in the normal distribution with means 

1u and 2u , as well as the equal covariance 2σ . The following expressions exist: 

 

conf

conf

conf

conf

ANNw
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ANNw
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)|()(
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11

ωω
ωω                                                  ……  (6.9) 
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2

σσπ
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i
UXXF −

−=                                                                 ……  (6.10) 

where i=1,2; w is a factor used in equation (6.8). 

After some manipulations, the corresponding error and rejection rates can be formulated 

as follows:  

)()( aANNE conf ϕ=   

)()()( abANNR conf ϕϕ −=                                                                                                   

   ∫ ∞−

−=
z dxxez )2/( 2

2
1)(
π

ϕ                                                                                  
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21
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−
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−
−

+−=

−
−

−−=

                                                                                  

where s is the mean difference for two feature vectors 

Fig. 6.1 shows the tradeoff curves of the error and rejection rates with their mean 

differences.  
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 Fig. 6.1 Rejection and error tradeoff curves with mean differences   

 

Based on the analysis, there is one way to reduce the rejection and the error rates: the 

larger mean difference (s) between two classes will result in a significant reduction in 

both the rejection rate and the error rate. It means that more discriminative feature vectors 

are helpful in suppressing both rejection rate and the error rate. 

  

6.2 Analysis of an Ensemble Classifier   

According to the principle of divide and conquer, a complex task can be solved by 

dividing it into a number of computationally simpler tasks. The simpler tasks can be 

achieved by distributing the tasks to a number of experts. For example, one way is to 

divide the input space into a set of subspaces. Each expert works on an individual 

subspace. The combination of experts is said to constitute an ensemble classifier.  The 

responses of several experts are combined to produce an overall output.   
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Fig. 6.2 shows the block diagram of an ensemble classifier. For simplicity, it is assumed 

that input xi, (i=1,2….n) is either an individual feature component or a feature vector, 

whose outputs are somehow combined to produce an overall output y. 

  

   

Feature  1
x1

Feature n
xn

Feature 2
x2

Feature 3
x3

Expert 1

Expert 2

Expert n

Expert 3

Classifier 
Combiner Output y

... ...

     

      Fig. 6.2 Block diagram of an ensemble classifier 

 

Generally speaking, in a classification problem, the goal of the classification is to predict 

the output value Y ( where Y is a label vector T
Cyyy ]...,[ ,21 with C elements, which 

denotes C classes with one corresponding to the correct class, and all others 

corresponding to zero), given the values of a set of input features },...,{ 21 nxxxX = , 

simultaneously measured on the same system. We denote the approximation in the 

following equation: 

ε+= )(XFY                                                                                                      …… (6.11)      
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Here, F(X) is an estimating function vector with C elements. For instance, for neural 

networks or gating networks, which we will discuss in the next chapter, all data in the 

vector should be equal to or larger than 0.0 and the sum of all data in the vector should be 

1.0. ε  is a random variable vector. The “training” data set NYXT 1},{=  is used to “learn” 

a classification rule. Namely, the usual paradigm for accomplishing classification is to 

use the training data T to form an approximation of ),( TXF  for )(XF .  

In this thesis, we use multilayer perceptron artificial neural networks and gating networks 

as classifiers, which minimize the mean squared error between the actual outputs (outputs 

of the networks) and the desired outputs (labels). Therefore, the recognition performance 

can be evaluated by the mean squared prediction errors, which come from the difference 

between the label Y and its estimation function ),( TXF , based on the training samples. 

Through the decompositions [28], the following equations exist: 

222 ]|[)],()([)],([ XETXFXFETXFYE εε+−=− ΩΩ                                      …… (6.12)         

222 )],(),([)],()([)],()([ TXFETXFETXFEXFTXFXFE ΩΩΩΩ −+−=−    …… (6.13) 

The random variable vector ε  is independent of the training data T and the estimation 

function ),( TXF  with 0)|( =XE ε  [28]. In the following discussion, we will only 

analyze the estimation errors caused by ),( TXF . The expectation ΩE  takes over the 

training space Ω . 

The quantity in equation (6.13) is equal to the bias and the variance:   

Bias:                   2)],()([))(( TXFEXFXFB ΩΩ −=                                          …… (6.14) 

Variance:           ])),(),([())(( 2TXFETXFEXFV ΩΩΩ −=                                …… (6.15)     
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Generally, the variance reflects the sensitivity of the estimation function ),( TXF  to the 

training samples T. The bias represents how closely on average the estimation function 

),( TXF  is about to approximate the target function )(XF . The bias and the variance are 

two important factors affecting the estimation error or classification error in a pattern 

recognition problem. Equation (6.13) can be rewritten as:  

))(())(()],()([ 2 XFVXFBTXFXFE ΩΩΩ +=−                                                           

We will discuss an ensemble logical “and” scheme and an ensemble averaging scheme in 

the next two subsections. 

6.2.1 Ensemble Logical “and” Scheme  

The overall recognition outputs are based on the logical “and” operation on different 

classifiers ),( TXF ii .   

),(),(
1

TXFTXF ii

M

i=
Λ=                                                                                      …… (6.16) 

An ensemble logical “and” scheme can be represented as: 

]|),([)|),((
),(,),(, ,...,1, thresholdCjiiMiithresholdCj TiXiFjTXFj

dTXFdTXF ≥=≥ ⇒∀↔⇒    

                                                                                                                           …… (6.17) 

In equation (6.17),  an ensemble logical “and” classifier votes for a recognizing digit, 

such as jd , with the condition that its confidence value of jth output node is equal to or 

larger than a predefined threshold ( thresholdC TXFj ≥),(, ) if and only if for every 

classifier ),( TXF ii , (i=1,2,…,M) in the ensemble classifier, each ),( TXF ii  also votes for 

the same recognizing digit, such as jd , with the confidence value of the jth output node 
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being equal to or larger than the predefined threshold ( thresholdC TXFj ii
≥),(, ); otherwise, 

the recognized numeral will be rejected by the ensemble logical “and” classifier. 

In order to keep the overall recognition performance, when an ensemble logical “and” 

scheme is employed, it is necessary for each classifier ),( TXF ii  to have a similar 

recognition performance. The ensemble logical “and” classifier does not increase the 

recognition rate. Instead, it will reject those patterns with low confidence values in any 

individual classifier. As a result, the ensemble classifier scheme will enhance recognition 

reliability. 

6.2.2 Ensemble Averaging Scheme 

An ensemble averaging scheme with different feature sets of iX on a training set T can be 

used in the sum voting scheme. The ensemble averaging scheme can be denoted as: 

),(),(
1

1 TXFTXF i

M

i
iM ∑

=

=                                                                                 …… (6.18) 

If we omit Ω  and ),( TXi  in the second term on the RHS of equation (6.13), then, the 

variance becomes:  
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Thus, equation (6.19) can be rewritten as [78]: 
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It can be deduced that: 

)(max
])[][][(max)(

)( ,
ii

jijijii FV
M

FEFEFFEFV
FV Ω

Ω
Ω ≤

Δ−Δ+
≤                       ……  (6.21) 

where, 22 ])[(])[()( iii FEFEFV −=Ω , M>1.  

Equation (6.21) shows that the variance )(FVΩ  of the ensemble averaging scheme is less 

than that of any individual classifier. 

The bias of the ensemble classifier is denoted as: 

2

11

)]},(1[)(1{))(( TXF
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XFB
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i
ii

M

i
ii ∑∑

==
Ω −=  

As the output label of a character in an ensemble classifier is denoted as Y, according to 

equation (6.11), we assume that all the ideal estimating function )( ii XF  (without 

considering training samples T ) for ith classifier in the ensemble classifier is 

approximately equal to  Y , then we have :  

YXFXFXF MM ≅≅≅ )()...()( 2111                                                                                                

where symbol “≅ ” means being equal to or approximately being equal to. 

If we design the feature sets iX  and the corresponding classifiers ),( TXF ii  trained by the 

training samples T, (i=1,2,…,M) with the same estimation (recognition) performance, 

then we readily see that the bias of an ensemble averaging classifier is approximately 

equal to that of any individual classifier in the ensemble scheme. 

From the above analyses, the following solutions can be obtained: 

1) When an ensemble logical “and” classifier is applied, the recognition reliability is 

enhanced. 

2) A smaller variance in an ensemble averaging scheme will lead to a lower error rate ( in 

comparison with any individual classifier). 



 105

In the next section, we will introduce a cascade recognition system for reducing the 

rejection rate and increasing the recognition rate. 

 

6.3 Analysis of a Cascade Ensemble Classifier System 

A cascade classifier system can be composed of several two-level classifier systems. In 

this section, we will only discuss a two-level cascade classifier scheme with two 

ensemble classifiers, which are shown in Fig. 6.3. The input to the second ensemble 

classifier consists of the rejected characters in the first ensemble classifier.  

        

 

                 Fig. 6.3 A two-level cascade ensemble classifier scheme 

 

In the two-level ensemble classifier, the following relations are satisfied: 

I)   Overall Recognized Characters=Recognized Characters 1 + Recognized Characters 2 

II)  Overall Misrecognized Characters=Misrecognized Characters 1 + Misrecognized Characters 2 

III) Rejected Characters 2=Rejected Characters 1-Misrecognized Characters 2-Recognized Characters 2 

Based on the above analysis, some conclusions can be drawn: 
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• The number of rejected characters after any two-level ensemble classifier is 

smaller than that of any one-level ensemble classifier. Namely, the rejection rate 

of any two-level ensemble classifier is lower than that of any one-level ensemble 

classifier. 

• The correct recognition rate of the two-level ensemble classifiers is higher than 

that of any one-level ensemble classifier. 

• The misrecognition rate of the two-level ensemble classifiers is the sum of the 

two one-level ensemble classifiers. 

As discussed in section 6.1, the misrecognition (error) rate can be reduced by expanding 

the rejection space, or by setting a higher confidence threshold in the recognition system, 

or by using an ensemble logical “and” classifier. Correspondingly, the side effect of 

increasing the rejection rate can be suppressed by a multi-level cascade classifier system.   

In conclusion, there are three ways to simultaneously reduce the error rate, the rejection 

rate, and at the same time, to increase the system’s correct recognition rate:  

1) extracting more discriminative features 

      2)   using ensemble classifiers 

      3)  employing a cascade classifier system 

In our proposed ensemble classifier system, three ANNs and their gating networks are 

used to form an ensemble classifier based on the following: an ensemble classifier 

consisting of at least three classifiers can form a democratic voting system. 
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Chapter Seven  

Cascade Ensemble Classifier System for the 

Recognition of Handwritten Numerals with Rejection 

Strategies 

 

 

7.1 A Cascade Ensemble Classifier System 

A novel cascade ensemble classifier scheme with rejection strategies is proposed in order 

to achieve the lowest error rate while pursuing the highest recognition rate for the 

recognition of handwritten numerals. The recognition scheme is shown in Fig.7.1.  

         

                               
Fig. 7.1 A cascade recognition system with rejection strategy 

                    Note: Chars: characters 
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The cascade system shown in Fig. 7.1 consists of three layers of classification, which are 

serially linked. Depending on the classification scheme which will be discussed in the 

next section, each layer is composed of four levels of Multi-ANNs with/without Gating 

Networks (MANNGN) ensemble classifiers. The schematic diagram of one layer of 

classification is shown in Fig. 7.2. 

 
 
 Fig. 7.2 Schematic diagram of one layer of classification in a cascade structure  
 

We have implemented different frameworks of the combination of multi-ANN classifiers 

and their gating networks.    

• Training and Testing Procedures for the Cascade Ensemble Classifier 

System 

In the training procedure, for an ANN classifier at any level of any layer of the cascade 

classifier system, it is trained by the rejected characters in the previous level of the 

classifier. At the first level of the ANN classifier in each layer of classification, the ANN 

is trained by all the training samples with different feature sets as shown in Fig. 7.1, as 

follows: all the ANN classifiers in the first layer are trained by three randomly selected 

feature sets (I, II, III); all the ANN classifiers in the second layer are trained by the hybrid 
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feature sets (A, B, E); and all the ANN classifiers in the third layer are trained by the 

hybrid feature sets (C, D, F). Because the different feature sets are used at different layers 

of classification, it makes the classifiers complementary from the recognition point of 

view. The three randomly selected feature sets (I, II, III) and the six hybrid feature sets 

(A, B, C, D, E, F) have been discussed in chapter 4. At each level, the gating network is 

trained by the corresponding confidence values of the ANNs.  

At the first level of the first layer of the cascade system, most of the characters should be 

correctly recognized; more difficult characters are rejected and sent to the higher level 

classifiers. In other words, we design classifiers at the higher levels and train them to 

recognize more difficult characters which are rejected by lower level classifiers.  

Each ANN classifier is trained by pre-defined iterations and stopped when either iteration 

condition and/or the recognition accuracy are met. Therefore, the appropriate training 

samples for all higher level classifiers are needed in order to maintain the cascade 

recognition structure. About 15%-25% of training samples are rejected in the training 

level. The rejected samples are used as the training samples for the next higher level 

classifier.  

In the testing procedure, the characters rejected by the previous level classifier are fed 

into the recognizer at the next higher level for further recognition. The recognized 

characters are directly output for display on the computer screen or they are saved into 

the database. We used the MNIST handwritten digit database to test our scheme.  

• Advantages of the Cascade Ensemble Classifier System 

As the cascade classifier scheme is applied, the recognition system can use a rejection 

strategy to reject those characters with relatively low confidence values rather than taking 
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a risk to misrecognize them. The rejected characters are sent to the higher level of 

classifiers for further recognition.   

A novel framework with gating networks is proposed for congregating the outputs of the 

multi-classifiers. At the same time, the gating networks can remedy the setback of the 

ANN classifiers. The gating networks help to improve the recognition rate and the 

reliability of the cascade recognition system significantly. 

We used three ANNs and three gating networks to form an ensemble classifier. The 

output was voted on by three ANNs and three gating networks rather than depending on 

only one ANN. This mechanism was based on the democratic voting system so as to 

achieve a more reliable performance.  

It has been proven in the previous chapter that three new randomly selected feature sets 

have more distinct abilities than any other original feature set for recognition. We used 

three new randomly selected feature sets as the inputs of the ANN classifiers in the first 

layer in order to achieve a better recognition performance. 

For the inputs, different feature sets are fed into different layers of classification. The 

correlation among the feature sets is relatively low and they are somewhat 

complementary in terms of discriminant ability for different numerals. By this process, 

we can explore more discriminant capabilities of feature sets for recognition. 

Experiments have demonstrated that the hybrid features are useful for achieving a better 

result.  
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7.2 Three Ensemble Classifier Schemes 

In the design of the ensemble classifiers, we developed three schemes. 

Scheme I:    three parallel ANNs are combined by the majority vote or the sum vote. 

Scheme II:  a gating network (GN) is used to congregate the weighted outputs of three 

ANNs.   

Scheme III: three gating networks (each classifier using one gating network) are used to 

congregate the weighted confidence values of the three ANNs, respectively. The final 

recognition result is based on the outputs of the three classifiers and the outputs of the 

three gating networks.  

In scheme III, we call the new mixture of classifiers a “congregation scheme”. The goal 

of the congregation scheme is to increase the recognition reliability by using a double-

check mechanism (gating networks) on the confidence values of the three ANN 

classifiers. 

When using a congregation scheme, each ANN is trained individually by different 

features extracted from the training samples. From our experimental results, it has been 

observed that for any ANN, it is very difficult to achieve a 100% recognition rate on a 

large scale training set (for example, 60,000 training samples of the MNIST dataset). 

Consequently, the recognition rate on the testing set will not achieve a 100% 

performance. In order to increase the recognition rate, a gating network is used to remedy 

the confidence values of the classifiers. The gating network serves two purposes. Firstly, 

it tries to correctly recognize those characters with low confidence values shown on any 

one or all of the classifiers. Secondly, it tries to correctly recognize the ones which are 

misclassified while testing. 
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1) Combination Scheme I 

Scheme I consists of a combination of simple classifiers. Each classifier consists of three 

ANNs as shown in Fig. 7.3. The output is the combination of the three classifiers.  

                 

                Fig. 7.3 One level of simple multi-ANN classifier 

The rule for recognition (scheme I) is: 

A numeral is accepted if: 1) three classifiers vote for the same numeral at the same time, 

where the sum of the confidence values is equal to or larger than 2.4, or the confidence 

value of each ANN is larger than 0.70; 2) the sum of the confidence values of any two 

ANNs is larger than 1.99 and they both vote for the same numeral; otherwise, the 

numeral is rejected. 

• Configuration of ANN 

For each ANN, we use a three-layer structure: 

           Input layer -----------Hidden layer ------------- Output layer 

where, the number of nodes at the input layer = the number of the input features. 

The number of nodes at output layer = 10 (representing 10 numerals). 
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The number of nodes at the hidden layer depends on the number of training samples. 

Table 7.1 lists the number of the hidden layer nodes with different numbers of training 

samples. 

Table 7.1    List of no. of nodes at hidden layer with different no. of training samples  

No. of training samples ( x ) No. of nodes at hidden layer 

x ≥ 20,000 150 

10,000 ≤ x <20,000 100 

5000 ≤ x <10,000 50 

2000 ≤ x <5000 30 

x < 2000 10 

  

As scheme I only uses a simple combination of three ANNs, we will propose other 

schemes with gating networks. 

2) Classifier Scheme II 

A new combination scheme of classifiers, which congregates three ANNs and a gating 

network, is proposed.  The schematic diagram is shown in Fig. 7.4. The output 

confidence values of three ANNs are weighted by w10~w19 for ANN1, w20~w29 for 

ANN2, and w30~w39 for ANN3 (note: w10~w19 refers to the weights of the confidence 

values c10~c19 of ANN1, and so on). A gating network is used to congregate the weighted 

confidence values.  
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Fig. 7.4 An ensemble classifier consisting of three ANNs and one gating network 

A genetic algorithm is used to evolve the optimal weights for the gating network from the 

confidence values of three ANNs. 

Suppose the outputs of three ANNs are represented as: {c10, c11,…,c19}, {c20, c21,…,c29}, 

{c30, c31,…, c39}, respectively.  

The weighted outputs of the ANNs’ confidence values can be calculated as follows: 
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where ],...,,[ 910 iiii wwwW = , ],...,,[ 910 iiii cccC =    i=1,2,3,  for three ANNs. 

Add three weighted confidence values into a Y vector:  
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Then a generalized gating network is applied to Y.  

∑
=

k

y

y

j k

i

e
eg                                                                                              ……  (7.3) 
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G is the output of the gating network. 

Our goal is to pursue a lowest misrecognition rate and at the same time to seek the 

highest recognition performance. We can create a vector Otarget with 10 elements. In the 

vector, the value of the corresponding label is set equal to 1.0, while others are set equal 

to 0.0. A fitness function f is chosen to minimize the difference between the output G and 

the corresponding training sample vector ettO arg , as follows: 

2
arg || ettOGf −=                                                                                                  ……  (7.4) 

By minimizing the equation (7.4) through a genetic evolution, the weights tend to be 

optimal.  Then, the recognition criterion is set as follows: 
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• A numeral is accepted if: 1) three ANN classifiers vote for the same numeral at 

the same time, where the sum of the confidence values is equal to or larger than 

2.4, or 2) the gating network votes for a numeral, where the confidence value of 

the gating network is larger than 0.85, or 3) the sum of the confidence values of 

any two ANNs is larger than 1.99 and they both vote for the same numeral and 

the gating network votes for the same numeral. Otherwise, the numeral is 

rejected. 

As only one gating network is used in this scheme, the congregated outputs of the gating 

network consist of ten nodes, which represent ten numerals.  The confidence values of the 

three ANNs and the ten outputs of the gating network are used to make a decision about 

the final recognition results. However, there may still be some errors in the testing 

samples, so we propose another new scheme which includes three ANNs and three gating 

networks in the scheme III.   

3) Classifier Combination Scheme III 

We propose another classifier combining scheme shown in Fig. 7.5.   

 



 117

  

 Fig. 7.5 An Ensemble classifier consisting of three ANNs and three gating 

networks   

This new scheme includes three gating networks. Each gating network is used to 

congregate one of ANN’s outputs.  

Three ANN networks produce their outputs Ci ={ cij } as a generalized confidence value 

vector (0< cij ≤1.0). Here i=1,2,3 for three ANNs;  j=0,1,2,…9 for ten numerals; and cij  

denotes the confidence value for the jth nodes of the ith ANN.  
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The ith gating networks receive each classifier’s confidence values Ci, where Ci is an 

input vector and the gating networks produce the weighted outputs. An intermediate 

variable ijξ can be calculated as: 

ijijij cw=ξ                                                 …...  (7.5) 

Under the condition: 0.1=∑ j ijc ; the weight wij is chosen in such a way that it optimizes 

the gating network’s output in order to achieve the highest recognition rate in the system.   

In order to generalize the output, the ij-th output ijg  of the gating networks is the 

“softmax” function of ijξ , as follows: 

∑
=

k
ik

ij

e
e

ijg ξ

ξ

                               ……  (7.6) 

where k=0,1,…,9. 

Equation (7.6) is the jth unit of the ith gating network and it satisfies the following 

condition: 

1=∑ j ijg                                                                                                               …… (7.7) 

where, we have: },...,,{ 910 iiii gggG = ,  i=1,2,3 for three classifiers, iG  is an output vector 

of the gating network i.   

The following equation can be used to train three gating networks in order to obtain the 

best recognition performance:    

0||
3

1

2
arg ⇒−∑

=i
iett GO                                                                                           …… (7.8) 



 119

From our experiments, we obtained the empirical criteria for recognition based on the 

combination of the outputs of the three ANNs and the outputs of the three gating 

networks, which are listed below: 

1) If three ANNs vote for the same numeral at the same time and the three gating 

networks vote for the same numeral, which is the one that the three ANNs voted for, 

where each ANN’s confidence value is at least 0.60, then the numeral is accepted. 

2) If three gating networks vote for the same numeral and the confidence value of any of 

the two gating networks is greater than 0.65, while the confidence value of the third 

gating network is at least greater than 0.45 and it is the highest confidence value in the 10 

nodes of the third gating network, then the numeral is accepted. 

3) If two of three ANNs vote for the same numeral, where the sum of the confidence 

values of the two ANNs is greater than 1.99 and the remaining ANN may vote for 

another numeral and the confidence value of the remaining ANN is smaller than 0.6, then 

the numeral is accepted as the label chosen by the two ANNs. 

4) If none of the above condition is met, the numeral is rejected. 

The rejected numeral is sent to the higher level ensemble classifiers for recognition. The 

thresholds used in the criteria are empirically given based on experiments. 

 

7.3 Genetic Algorithms for Training Gating Networks  

Genetic algorithms (GAs) offer a particularly attractive approach to optimization since 

they generally perform an effective search of large, non-linear spaces [51, 86, 96, 104]. 



 120

The genetic algorithm was developed based on Darwinian evolution and natural selection 

for solving optimization problems. GA applies evolution-based optimization techniques 

of selection, mutation, and crossover to a population for computing an optimal solution. 

The problem of the weight selection in the gating network is well suited to the evolution 

by GAs. 

In the normal combination of classifiers such as majority voting or sum voting, the 

mutually dependent information among classifiers concerning their individual 

discriminating power is neglected. However, our proposed scheme congregates the 

classifiers’ outputs with their confidence values through weighted linear combination and 

nonlinear generalization. GA-based gating networks have the following advantages: 

1) Given a vector X, with n-dimensional random weights, the task of the GAs is to find a 

vector of the weights that minimizes the fitness function.  

2) Given an appropriate criterion function, the GAs can evolve to an optimal solution 

globally at only a time complexity of O(n).   

 In the handwritten character recognition area, the most difficult problem is to find a 

reasonable fitness function for a large set of training samples. The recognition rate can be 

used as a fitness criterion for a training classifier. However, it is unfeasible for an ANN to 

be used as a classifier because it needs huge computations for each generation of 

learning. 

In this thesis, we use GAs to train the gating networks. When equation (7.4) or equation 

(7.9) is used as the fitness function, our GAs pursue the smallest difference between the 

gating networks’ outputs and the target label vector Otarget. The input of each gating 
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network is the corresponding ANN’s output, which was trained by training samples 

beforehand. The following is a description of steps of our genetic algorithms. 

Chromosome Representation 

There are three ANNs in our system. Each ANN’s outputs have 10 nodes. A chromosome 

is a vector consisting of 30 weights. Each chromosome component is a real number. The 

length of one chromosome is 10x3=30. 

A chromosome is presented as:   

[  w1,0    w1,1,   …,          w1,9      w1,10    w1,11    …     w1,19    w1,20    w1,21 …       w1,29 ]   

   |-10 weights for ANN1--|       |-10 weights for ANN2-|    |-10 weights for ANN3-|  

Population Initialization 

The initial chromosomes P (48 populations in this thesis), are randomly created 

(0.0~1.0): 

Chromosome 1: [w1,0   w1,1 … w1,29] 

Chromosome 2: [w2,0   w2,1 … w2,29]  

 …………………………………….. 

Chromosome P: [wP,0   wP,1 … wP,29] 

Selection 

The best 24 chromosomes with minimum fitness values, taken from 48 populations in 

each generation, are chosen to go into the mating pool. 

Fitness Computation 

In the MNIST database, there are 60,000 training samples. One target label vector Otarget 

is created for each training sample. The inputs of the gating networks consist of the 

ANNs’ confidence values.  Equation (7.4) or equation (7.8) is used as a fitness function.  
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Crossover 

Crossover occurs when information is exchanged between two parent chromosomes and 

the new information is introduced to children chromosomes. A single offspring parameter 

value, wnew, comes from a combination of the two corresponding parent parameter 

values. The crossover begins by randomly selecting a parameter a in a pair of parents, 

which is a crossover point. The crossover is calculated as follows:  

)}1(*{ −= Mrandomroundupa  

],...,,...,,[)(2
],...,,...,,[)(1

1210
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−

=
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wwwwwfatherparent
wwwwwmotherparent

 

where M is the length of the weight vector. The subscripts m and d in the weight 

parameters (wmi,wdi) represent the mother and the father in the mating  pool. Then, the 

selected parameters are combined to form new parameters. Two new weights are 

calculated as follows: 
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                                                                                 …… (7.10)           

where ß is a random value between 0.0 and 1.0. The next step is to exchange the right 

parts of two parents, consisting of the crossover point to the end for each parent. 
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Mutation 

In our experiment, the mutation rate is set at 0.01. According to the mutation rate, we 

randomly replace the wmi (wdi) with a new weight element, which is produced by 

multiplying the old weight value with a new uniform random number (0.0-1.0).   

Termination Criteria 

In the training procedure, termination occurs when either the number of iterations reaches 

its defined number or the fitness value converged, so that the weights in chromosome 

pool are stable. 

 

7.4 Experimental Results 

We conducted five experiments based on the hybrid features and the various cascade 

recognition schemes. The MNIST database, which includes a set of 60,000 training 

samples, and a different set of 10,000 testing samples, are used in the following 

experiments. The experimental results are listed below:     

1) Experiment One 

Experiment one consisted of a series of six sub-experiments. The six sub-

experiments were conducted only on the first layer of the cascade classification 

structure in Fig. 7.1, using different amounts of training samples with three sets of 

randomly selected features. 

In a cascade classification structure, one layer of the cascade classification can be 

composed of more than three serial hierarchical classifiers depending on the number of 

training samples. A classifier consists of three ANNs without any gating network. The 
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rejected training samples in the classifier at any level will be regarded as the training 

samples for the next higher level classifier until the rejected samples go through all of the 

classifiers. The remaining characters may be recognized or rejected in the final stage. 

Three randomly selected feature sets: Feature Set I: 200 (number of feature dimensions; 

this notation will be used in the following experiments), Feature Set II: 218, Feature Set 

III: 240, as described in chapter 4, were used in Experiment One. We conducted a series 

of experiments with different numbers of training samples varying from 10,000 to 

60,000. Here, we list six results. 

 

• Experiment I-A: 10,000 training samples used 

The hierarchical recognition system was trained by the first 10,000 training samples, and 

tested on the same set of 10,000 training samples and another set of 10,000 testing 

samples of the MNIST database, respectively. We used the rejection rule of the 

combination scheme I in Section 7.2. Three levels of classifications were used in the 

experiment. The recognition results conducted on the 10,000 training samples and the 

10,000 testing samples are listed in Table 7.2.   

Table 7.2 Recognition results of the hierarchical structure trained by 10,000  

                 training samples  
Testing category Classifier I Classifier II Classifier III 

No. of Rejection for 10,000 training samples 1607 928 44 

No. of Misrecognition for 10,000 training samples 0 0 0 

No. of Rejection for 10,000 testing samples 732 636 474 

No. of Misrecognition for 10,000 testing samples 22 10 8 
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In summary, the overall recognition results conducted on the 10,000 testing samples are 

listed below: 

No. of Misrecognized Numerals = 40 

No. of Rejected Numerals = 474 

Correct Recognition Rate = 94.86%    

Reliability Rate: (10000-40)/10000= 99.60% 

 

• Experiment  I-B: 20,000 training samples used 

The ANN classifiers were trained by the first 20,000 training samples, and tested on 

10,000 testing samples of the MNIST database. As the training samples were increased to 

20,000, the number of hierarchical classifier levels was increased to five. Table 7.3 lists 

the recognition results conducted on the 20,000 training samples and 10,000 testing 

samples. 

Table 7.3 Recognition results of hierarchical structure trained by 20,000 training  

                 samples 
Testing category Classifier 

I 
Classifier 

II 
Classifier 

III 
Classifier 

IV 
Classifier 

V 

No. of Rejection for 20,000 training 
samples 

2778 866 388 158 100 

No. of Misrecognition for 20,000 
training samples 

0 0 0 0 0 

No. of Rejection for 10,000 testing 
samples 

505 445 406 375 323 

No. of Misrecognition for 10,000 testing 
samples 

9 2 2 9 6 

 

In summary, the overall recognition results conducted on the 10000 testing samples are 

listed below: 
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No. of Misrecognized Numerals = 28 

No. of Rejected Numerals = 323 

Correct Recognition Rate = 96.49%    

Reliability Rate: (10000-28)/10000 = 99.72% 

 

• Experiment I-C: 30,000 training samples used 

The ANN classifiers were trained by the first 30,000 training samples, and tested on 

10,000 testing samples of the MNIST database. Table 7.4 lists the recognition results 

conducted on the 30,000 training samples and 10,000 testing samples. 

Table 7.4 Recognition results of hierarchical structure trained by 30,000 training  

                 samples 
Testing category Classifier 

I 
Classifier 

II 
Classifier 

III 
Classifier 

IV 
Classifier 

V 

No. of Rejection for 30,000 training 
samples 

5320 2565 1589 520 70 

No. of Misrecognition for 30,000 
training samples 

0 0 0 0 0 

No. of Rejection for 10,000 testing 
samples 

450 408 375 335 254 

No. of Misrecognition for 10,000 testing 
samples 

8 2 2 7 5 

 

In summary, the overall recognition results conducted on the 10000 testing samples are 

listed below: 

No. of Misrecognized Numerals = 24 

No. of Rejected Numerals = 254 



 127

Correct Recognition Rate = 97.22%    

Reliability Rate: (10000-24)/10000 = 99.76% 

• Experiment I-D: 40,000 training samples used 

The ANN classifiers were trained by the first 40,000 training samples, tested on 10,000 

testing samples of the MNIST database. There were five hierarchical classifier levels for 

classification. The recognition results are shown in Table 7.5. 

Table 7.5 Recognition results of hierarchical structure trained by 40,000 training  

                 samples 
Testing category Classifier 

I 
Classifier 

II 
Classifier III Classifier 

IV 
Classifier 

V 

No. of Rejection for 40,000 training 
samples 

7582 4185 2783 748 50 

No. of Misrecognition for 40,000 
training samples 

0 0 0 0 0 

No. of Rejection for 10,000 testing 
samples 

338 311 271 246 189 

No. of Misrecognition for 10,000 
testing samples 

8 5 3 2 2 

 

In summary, the overall recognition results conducted on the 10000 testing samples are 

listed below: 

No. of Misrecognized Numerals = 20 

No. of Rejected Numerals = 189 

Correct Recognition Rate = 97.91%    

Reliability Rate: (10000-20)/10000= 99.80% 
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• Experiment I-E: 50,000 training samples used 

The ANN classifiers were trained by the first 50,000 training samples, and tested on 

10,000 testing samples of the MNIST database. There were six hierarchical classifier 

levels. The recognition results are listed in Table 7.6. 

Table 7.6 Recognition results of hierarchical structure trained by 50,000 training  

                 samples 
Testing category Classifier  

I 
Classifier  

II 
Classifier  

III 
Classifier  

IV 
Classifier  

V 
Classifier 

VI 

No. of Rejection 

for 50,000 training samples 

8532 5000 3620 2225 1256 155 

No. of Misrecognition  

for 50,000 training samples 

0 0 0 0 0 0 

No. of Rejection  

for 10,000 testing samples 

324 296 268 221 186 163 

No. of Misrecognition  

for 10,000 testing samples 

3 3 2 2 2 2 

 

In summary, the overall recognition results conducted on the 10,000 testing samples are 

listed below: 

No. of Misrecognized Numerals = 14 

No. of Rejected Numerals = 163  

Correct Recognition Rate = 98.23%    

Reliability Rate: (10000-14)/10000= 99.86% 
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• Experiment I-F: 60,000 training samples used 

The ANN classifiers were trained by 60,000 training samples, and tested on 10,000 

testing samples of the MNIST database. There were seven hierarchical classifier levels. 

The recognition results are listed in Table 7.7. 

Table 7.7 Recognition results of hierarchical structure trained by 60,000 training  

                 samples 
 

Testing category 

Classifier 
I 

Classifier 
II 

Classifier 
III 

Classifier 
IV 

Classifier 
V 

Classifier 
VI 

Classifier 
VII 

No. of Rejection  

for 60,000 training samples 

9337 5227 4513 2249 1993 1200 150 

No. of Misrecognition  

for 60,000 training samples 

0 0 0 0 0 0 0 

No. of Rejection  

for 10,000 testing samples 

304 243 212 156 136 125 119 

No. of Misrecognition  

for 10,000 testing samples 

2 2 1 0 1 1 2 

 

In summary, the overall recognition results conducted on the 10,000 testing samples are 

listed below: 

No. of Misrecognized Numerals = 9 

No. of Rejected Numerals = 119  

Correct Recognition Rate = 98.72%    

Reliability Rate: (10000-9)/10000= 99.91% 
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 Fig. 7.6 shows a bar graph of the recognition performances with different training 

samples. 
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    Note: RR: Recognition Rate.  

Fig. 7.6 Recognition rates conducted on the MNIST dataset with 

different training samples  

From these sub-experiments, it can be concluded that when more training samples are 

used and more hierarchical levels of the classification are employed, the recognition rate 

will increase from 94.86% (10,000 training samples used) to 98.72% (60,000 training 

samples used). The reliability rate also increases from 99.60% to 99.91%. It means that 

more training samples help to increase recognition performance. 
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2) Experiment Two 

The second experiment used three layers of the cascade recognition shown in Fig. 

7.1. Each layer consisted of four levels of ensemble classifiers. Each ensemble 

classifier was composed of three ANNs without any gating networks. 

Different feature sets were used at the different layers of classification in order to make 

the ensemble classifiers complementary. Three randomly selected feature sets (Feature 

Set I: 200, Feature Set II: 218, Feature Set III: 240) were used in the first layer. Three 

hybrid feature sets (Feature Sets A, B, E) were used in the second layer. Three hybrid 

feature sets (Feature Sets C, D, F) were used in the third layer. The majority or voting 

strategy was used to combine three classifiers. The rejection rule of the combination 

scheme I in section 7.2 was used. 

During the testing procedure, the rejected characters at the previous layer were fed into 

the recognizer at the next layer for further recognition. The recognized characters were 

directly output for display on screen or saved into the database. 

In summary, the testing results for each of the three layers are listed below:  

First Layer 

No. of Testing Samples = 10,000 

No. of Misrecognized Chars = 5 

No. of Rejected Chars = 214 

Correct Recognition Rate = (10000-214-5)/10000=97.81% 

Reliability Rate = (10000-5)/10000 = 99.95% 
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Second Layer 

No. of Testing Samples=214 

No. of Misrecognized Chars = 2 

No. of Rejected Chars = 140 

Accumulated Recognition Rate = (10000-140-7)/10000 = 98.53% 

Accumulated Reliability Rate = (10000-7)/10000 = 99.93% 

Third Layer  

No. of Testing Samples = 140 

No. of Misrecognized Chars = 2 

No. of Rejected Chars = 103 

Accumulated Recognition Rate = (10000-103-9)/10000 = 98.88% 

Accumulated Reliability Rate = (10000-9)/10000 = 99.91% 

Compared with the results of Experiment I-F with 60,000 training samples, the 

recognition rate of Experiment Two with 60,000 training samples has slightly increased 

from 98.72% to 98.88%. The final results showed that the total number of misrecognized 

numerals was nine in both experiments. We needed to further explore the classifier 

combination strategy in order to reduce the misrecognition rate while increasing the 

recognition rate.  
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3) Experiment Three 

In Experiment Three, we used the same cascade scheme as in Experiment Two. 

Each ensemble classifier was composed of three ANNs and one gating network. The 

structure of the ensemble classifier was shown in Fig. 7.4. 

This scheme congregated three ANN’s recognition results into a gating network. As 

described in Section 7.2, the weights of the three ANNs’ outputs were evolved by genetic 

algorithms in order to achieve ten optimal outputs for the gating network. The system 

was trained by 60,000 training samples, and tested on 10,000 testing samples. The 

decision rules were chosen from the combination scheme II in section 7.2. The results are 

listed below: 

First Layer 

No. of Testing Samples = 10,000 

No. of Misrecognized Chars = 8 

No. of Rejected Chars = 291 

Recognition Rate = (10000-291-8)/10000= 97.01% 

Reliability Rate = (10000-8)/10000 = 99.92% 

Second Layer 

No. of Testing Samples = 291 

No. of Misrecognized Chars = 1 

No. of Rejected Chars = 120 

Accumulated Recognition Rate = (10000-120-8-1)/10000 = 98.71% 
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Accumulated Reliability Rate = (10000-8-1)/10000 = 99.91% 

Third Layer   

No. of Testing Samples = 120 

No. of Misrecognized Chars = 0 

No. of Rejected Chars = 89 

Accumulated Recognition Rate = (10000-89-9)/10000 = 99.02% 

Accumulated Reliability Rate = (10000-9)/10000 = 99.91%  

Because a gating network was added to the outputs of three ANNs, the gating network 

was able to correct some errors that occurred in the ANNs’ outputs. For example, if some 

confidence values of one ANN were relatively low, after the gating network’s correction, 

the confidence values of the gating network were increased. Some rejected characters of 

ANNs were recognized by the gating network. Compared to Experiment Two, the 

recognition rate in Experiment Three increased from 98.88% to 99.02%. However, the 

misrecognition rate remained at the same level as Experiment Two.  

 

4) Experiment Four 

In Experiment Four, we used the same cascade recognition structure described in 

Experiments Two and Three, except that a new classification scheme shown in Fig. 

7.5 was used. In this scheme, each ANN has a gating network for the confidence 

values’ verifications and corrections. 
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The recognition rules, which consider three gating networks’ outputs, were modified 

accordingly as described in the combination scheme III in Section 7.2. The experiment 

was conducted on the 60,000 training samples and tested on 10,000 testing samples of the 

MNIST dataset. The results are listed below: 

First Layer 

No. of Testing Samples = 10,000 

No. of Misrecognized Chars = 4 

No. of Rejected Chars = 168 

Correct Recognition Rate = (10000-168-4)/10000 = 98.28% 

Reliability Rate = (10000-4)/10000 = 99.96% 

Second Layer 

No. of Testing Samples = 168 

No. of Misrecognized Chars = 0 

No. of Rejected Chars = 94 

Accumulated Recognition Rate = (10000-94-4)/10000 = 99.02% 

Accumulated Reliability Rate = (10000-4)/10000 = 99.96% 

Third Layer    

No. of Testing Samples = 94 

No. of Misrecognized Chars = 0 

No. of Rejected Chars = 77 
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Accumulated Recognition Rate = (10000-77-4)/10000 = 99.19% 

Accumulated Reliability Rate = (10000-4)/10000 = 99.96% 

Up to now, the classifier, consisting of three ANNs and three gating networks, shows the 

best recognition performance in terms of the overall recognition accuracy and the overall 

reliability. The main reason for this improvement is that three gating networks are linked 

to the outputs of three ANNs (each ANN has one gating network). Therefore, each gating 

network can correct or remedy the errors of the corresponding ANN effectively. As a 

result, the overall recognition performance is increased.  

 

5)  Experiment Five 

Sum Voting without rejection in the recognition of the rejected digits in Experiment 

Four   

In Experiment Four, 81 characters (77 rejected characters in the third layer of the cascade 

system + 4 misrecognized characters in the first layer of the cascade system) were not 

correctly recognized in our proposed cascade ensemble recognition system. In order to 

investigate the tradeoff between the recognition, misrecognition and rejection rates on the 

77 characters, different confidence thresholds ( confANN ) in equation (6.8), which were 

related to reject parameter t  in our error analysis, were chosen in this experiment. 

Our sum voting experiment was conducted as follows: three random hybrid feature sets 

[Random Feature Set I (200), Random Feature Set II (218), Random Feature Set III 

(240)] were used as the inputs of three ensemble classifiers. The classifiers were trained 
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by 60,000 training samples of the MNIST dataset and were used to recognize 77 rejected 

characters by the sum voting scheme without any rejection option. 

Fig. 7.7 shows the tradeoff of the numbers among the recognition, misrecognition and 

rejection categories conducted on the 77 rejected samples in Experiment Four by setting 

different confidence thresholds. 
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Fig. 7.7 Tradeoff among the recognition, misrecognition and rejection 

in the sum voting scheme without rejection option 

 

 In Fig. 7.7, if we reduced the confidence threshold from 3.0 to 0.0, the rejection number 

gradually decreased to 0; however, the misrecognition number increased from 4 to 41. At 

the same time, some of rejected digits in the previous level were correctly recognized. 

Fig. 7.8 depicts the relationship curve between the substitution rate (misrecognition rate) 

and the rejection rate for our proposed cascade ensemble classifier system (Combining 



 138

scheme III in section 7.2: an ensemble classifier consists of three ANNs and three gating 

networks).   

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45
Tradeoff curve of substitution and rejection

Rejection rate %

Substitution rate %

 

             Fig. 7.8 Tradeoff curve between the rejection rate and substitution rate 

Without rejection option, the recognition results conducted on the 77 rejected numerals 

using sum voting scheme are listed below: 

Number of misrecognized digits= 37 

Number of correct recognition digits= 40  

So the overall recognition rate of the cascade ensemble classifier system without rejection 

in the last layer of sum voting scheme is: (10000-37-4)/10000=99.59%. 

The identification numbers (ID) and the original character images of the misrecognized 

digits in our proposed cascade ensemble classifiers are listed below: 

• Four digits were misrecognized in the first layer of the cascade system  
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          340(5->3)                674(5->3)                 3030(6->0)                    4911(4->9) 
 
Note: 1) four digits were misrecognized in the first layer of ensemble classifiers when the 

rejection strategy was applied. 

           2) 340(5->3) means the digit ID 340, which was labeled as “5”, but it has been 

misrecognized as “3”. The testing ID is from 0 to 9999. 

• Here is the list of 37 misrecognized digits using the sum voting scheme for the 

recognition of the 77 rejected digits: 

                                
     247(4->6)   435(8->9)      582(8->2)    684(7->3)     1072(3-->5)       1112(4-->0) 
 

                                    
     1364(8->2) 1681(3->7)  1737(5->1)    2040(5->6)   2129(9->8)       2189(9->1) 
  

                      
    2329(0->2)    2414(9->4)   2454(6->8)   2823(7->4)   3225(7->8)   3629(8->0) 
  

                          
      3778(5->3)   3906(1->3)  4078(9->7)  4300(5->8)    4359(5->2)   4536(6->5) 
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    4814(6->4)        4956(8->4)   5457(1->4)   5654(7->2)  5858(7->4)  6053(5->3) 
 

                       
6558(6->3)  6783(1->6)  7595(3->8)  8325(0->8)  9679(6->3)  9811(2->7)   9922(4->9) 
 

From this experiment, we can achieve a very high recognition performance using a sum 

voting strategy without rejection option in the last layer of the cascade ensemble 

classifier system. 

For those misrecognized characters shown above, we may use the geometrical features 

introduced in Section 4.1.7 to help improving the overall recognition rate. For example, 

for the recognition of the misrecognized digit “8” (ID: 1364) shown at P. 139, the middle 

line feature extraction method can be used to extract two loops on the character image 

vertically. Even the top part of the first loop is opened. The two loop features can be used 

to distinguish digit “8” from digit “2” easily because digit “2” has not two loops aligned 

vertically.       

 

7.5 Comparison of Three Cascade Schemes 

The effect of increasing the training samples has been discussed in the previous sections. 

Now, we will discuss the effects of recognition performance by using different ensemble 

classifiers in the cascade recognition system.   
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The comparisons of the recognition rates and the numbers of the misrecognition from 

Experiment Two to Experiment Four are shown in Figs. 7.9 and 7.10. 
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   Fig. 7.9 Comparison of recognition rates for experiments two-four 
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CS with 1 GN

CS with 3 GNs

  Fig. 7.10 Comparison of misrecognition numbers for experiments two-four 

Notes: CS without GN: cascade recognition structure without gating network (Experiment Two); 

CS with 1 GN: cascade recognition structure with one gating network (Experiment Three); 

CS with 3 GN: cascade recognition structure with three gating networks (Experiment Four); 
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The detailed information for the four schemes is shown in Table 7.8. 

Table 7.8 Recognition performances of three cascade schemes 

Scheme Recognition 
Rate (%) 

No. of Rejected 
chars 

No. of Errors Recognition  
Reliability Rate 

(%) 

CS without GN 98.88 103 9 99.91 

CS with 1 GN 99.02 89 9 99.91 

CS with 3GN 99.19 77 4 99.96 

 

In Experiment Four, we developed three gating networks, which were linked to the three 

ANN’s outputs, so as to congregate each ANN’s confidence values individually. 

Therefore, the final recognition results were voted on both three ANNs’ outputs and three 

gating networks’ outputs, and the best recognition performance was achieved. 

We conducted several experiments. The experiments demonstrated that: 1) the more 

training samples were used in training procedure, the higher the recognition rate could be 

achieved; 2) Hybrid feature sets were helpful in seeking a lower misrecognition rate; 3) 

The cascade ensemble classifier recognition with each ANN linking to one gating 

network (An ensemble classifier) can achieve the best recognition performance in terms 

of the highest recognition rate, and the highest reliability. Our proposed cascade 

ensemble classifier system can achieve 99.96% reliability and 99.19% recognition rate 

with rejection strategies or 99.59% recognition rate without rejection option in the last 

layer of the cascade classification system.  

Table 7.9 lists the recognition performance comparison of our proposed cascade 

ensemble classifier system with other latest recognition systems published in the 

literature.  
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Table 7.9 Recognition comparison of our proposed cascade ensemble classifier system 

with other recognition systems with rejection strategy  

Method Database Recognition 
Rate (%) 

Rejection 
Rate (%) 

Misrecognition 
Rate (%) 

Reliability 
(%) 

Hierarchical Classifier [98] 

Pattern Recognition, 2002 

 

NIST 

 

86.68% 

 

13.23% 

 

0.01% 

 

99.99% 

An Optimized Hill Climbing 
Algorithm [81] 

IWFHR’9, 2004 

 

NIST SD 19 

 

99.10% 

 

0.00% 

 

0.90% 

 

99.10% 

Rejection Strategy for 
Convolutional Neural 

Networks [12] 

ICDAR, 2005 

 

MNIST 

 

92.12% 

 

7.63% 

 

0.25% 

 

99.75% 

GP-based Secondary 
Classifiers [111] 

Pattern Recognition, 2005 

 

NIST 

 

90.00% 

 

9.70% 

 

0.03% 

 

99.70% 

Our proposed Cascade 
Ensemble Classifier System 

2006 

 

MNIST 

 

99.19% 

 

0.77% 

 

0.04% 

 

99.96% 

 

 

7.6 Recognition Speed 

We conducted an experiment to calculate the cascade ensemble classifier system’s speed. 

For example, if we used three ANNs and three gating networks as an ensemble   

classifier, and we used the cascade structure shown in Figs. 7.1 and 7.2, for 10,000 

testing samples, then the recognition time is about 100 seconds. This time includes the 

reading and saving of data from disk without considering the time for feature extraction. 

The classification speed for our system is 100s/10,000 digits = 10 ms/digit. 
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For the feature extraction and random feature selection, approximately, 10,000 characters 

took about 300s, namely: 

The feature extraction speed: 300,000/10,000 digits = 30 ms/character  

So the recognition time for feature extraction and classification is about 40ms/digit. 

Our cascade ensemble classifier system can recognize 25 digits per second. 

All of the experiments were conducted on a Pentium® 4 personal computer, CPU 

2.80GHz, 1.00 GB of RAM. 
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Chapter Eight 

Conclusions and Discussions 

 

In this thesis, many efforts were devoted to the recognition and verification of 

handwritten numeral recognitions. In pursuit of the highest recognition accuracy and the 

lowest misrecognition rate, we introduce a hybrid feature extraction strategy and a multi-

modal nonparametric analysis for feature dimensionality reduction (in order to obtain a 

faster and more stable classifier training procedure for verification). The design of a 

cascade ensemble classifier recognition system with rejection strategies is also 

introduced. From a practical perspective, the various recognizers and verifiers were 

designed and implemented using novel hybrid feature extraction algorithms and a newly 

designed ensemble cascade classifier system. The designed OCR engines were applied to 

handwritten numeral recognition.  A summary of thesis contributions and discussions on 

future direction is also addressed. 

 

8.1 Summary of Thesis Contributions 

It is common sense that if an OCR system can achieve an excellent recognition 

performance, the following two aspects must have played an important role: feature 

extraction and classification. In this thesis, our research focuses on: feature extraction and 

the design of a cascade ensemble classifier system in order to increase the recognition 

accuracy and reliability. The main contributions of this thesis are summarized below: 
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1) The highest recognition reliability and a minimal error rate for the recognition of 

handwritten digits have been achieved by the proposal of a novel cascade ensemble 

classifier system with rejection strategies. 

Based on a theoretical analysis of the tradeoff of the error, rejection, and recognition rates 

of a cascade ensemble classifier system, three solutions were proposed: (i) extracting 

more discriminative features to attain a high recognition rate, (ii) using ensemble 

classifiers to suppress the error rate, and (iii) employing a novel cascade system to 

enhance the recognition rate and to reduce the rejection rate. Based on these strategies, 

novel gating networks were used to congregate the confidence values of three parallel 

ANN classifiers. The weights of the gating networks were trained by Genetic Algorithms 

(GAs) to achieve the overall optimal performance. The novel framework with gating 

networks could remedy the drawback of the ANN classifiers. It led to the significant 

improvement of both the recognition rate and the reliability of the recognition system. 

The cascade ensemble classifier system has a lower rejection rate and a higher 

recognition rate compared to the one-level ensemble classifier system. The error rate can 

be reduced by expanding the rejection space, or by setting a higher confidence threshold 

in the recognition system, or by using an ensemble logical “and” classifier. In the training 

procedure, for any classifier at any level of the cascade recognition system, it is trained 

by the rejected characters in the previous level of the classifier. The trained classifier can 

recognize those characters, which are not recognized by previous classifiers. While a 

cascade recognition scheme is applied, the recognition system can use rejection strategies 

to reject those characters with relatively low confidence values rather than taking a risk to 

misrecognize them. The rejected characters are sent to a higher level of classifiers for 
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further recognition. The comprehensive experiments demonstrated that our proposed 

cascade ensemble classifier system with gating networks can achieve very encouraging 

results, i.e. 99.96% reliability with a 99.19% recognition rate with rejection strategy, or a 

99.59% recognition rate without rejection. 

 

2) A novel multi-modal nonparametric analysis for feature dimensionality reduction 

for the verification of handwritten digits has been proposed. 

The novel multi-modal nonparametric method utilizes only those training samples on and 

near the effective decision boundary to compute the between-class scatter matrix for 

optimal discriminant analysis. As we adopt the multi-modal discriminant analysis, the 

training data in each cluster are more centralized and the within-class scatter matrix will 

be less scattered than the mono-modal one. For the computation of the between-class 

scatter matrix, our method uses the quick-sort algorithm to sort the k-NN for each cluster, 

corresponding to every cluster in another class, so as to get the training data along the 

effective decision boundary. The adjacent k-NN training samples of two clusters from 

different classes are used to calculate the between-class scatter matrix. The optimal 

Fisher criterion based on our proposed method maximizes the between-class separability 

and minimizes the within-class separability in order to improve the system’s discriminant 

ability for classification. The computational complexity of our proposed algorithm for 

calculating the between-class scatter matrix Sb is )log( NNO , which is much smaller 

than the computation complexity of )log( 2 NNO  used in other similar nonparametric 

discriminant analysis approaches [5, 31], therefore less CPU time is required for classifier 

training. Experiments demonstrated that our proposed method could achieve a high 
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feature compression performance without sacrificing its discriminant ability. The results 

of dimensionality reduction make the ANNs converge more easily. For the verification of 

confusing handwritten numeral pairs, our proposed algorithm was used to congregate 

features, and it outperformed the PCA and compared favorably with other nonparametric 

discriminant analysis methods. 

 

3) The exploration of various hybrid feature extraction methods is highlighted in 

this thesis.  

As we know, feature extraction is a vital step in the recognition problems. In this thesis, 

seven sets of feature extraction algorithms are proposed. Among the seven sets of 

features, two dimensional real wavelets and complex wavelets are used to extract 

directional-based wavelet features. Medial axial transformation algorithm-based gradient 

features have shown their excellent discriminative ability in the recognition of the 

handwritten numerals. 

A simple and effective multi-class divergence analysis has been proposed for hybrid 

feature ranking and selection. By applying a random feature selection scheme to the 

seven sets of ranked features, three randomly selected hybrid feature sets were formed, 

which demonstrated a better recognition performance compared to the original feature 

sets. 

 



 149

8.2 Future Research Directions 

Handwritten character recognition has been extensively researched for the past few 

decades and has always been a challenging topic. Basically, two goals are needed in the 

theoretical research and the practical implementations: to achieve the highest recognition 

rate and, at the same time, to maintain the lowest misrecognition rate, or the highest 

reliability. In the future, further research can include in the following aspects: 

Theory can be further developed towards the cascade multi-class rejection rules. In our 

current system, the rejection rules, although effective, are mostly derived from empirical 

experiments. A systematic study of rejection strategies will be desirable for further 

theoretical work. 

For the hybrid feature extraction methods, the fine features should be further investigated. 

Different features have different discrimination merits for different recognition purposes. 

When designing a verifier, the fine features can be employed. More importantly, the 

development of a new theory and algorithm in feature extraction is also important. 

Finally, the combination of different classifiers, such as SVM, ANN, and K-NN 

embedded in a recognition system is also a suitable method of increasing recognition 

performance, because different classifier combinations have different merits in dealing 

with discriminant problems. The mechanism and structures of different classifier 

combinations need to be investigated. 
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